3D printing | Geeetech https://blog.geeetech.com Get Your Ideas Into Life Tue, 30 Dec 2025 08:23:21 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.3 https://blog.geeetech.com/wp-content/uploads/2025/06/cropped-blog-logo-32x32.png 3D printing | Geeetech https://blog.geeetech.com 32 32 What Is a Brim in 3D Printing and When to Use It? https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/what-is-a-brim-in-3d-printing-and-when-to-use-it/ https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/what-is-a-brim-in-3d-printing-and-when-to-use-it/#respond Tue, 30 Dec 2025 07:55:17 +0000 https://blog.geeetech.com/?p=13520 For anyone who has 3D printed more than a few times, chances are that they have experienced their 3D prints slowly peeling off the bed during the process. Most of the time, this leads to a failed result because of warping or other problems, because the 3D model does not adhere well enough to the bed. The solution is to use a brim to help secure the object snugly on the print bed. So let us take a closer look at how it works.

What Is a Brim in 3D Printing?

As the name suggests, brim refers to the extended part of a hat used for covering. Similarly, in 3D printing, it also refers to the extended part. The part that extends from the first layer is mainly used to prevent the edges of the prints from warping.

A brim is not a support structure in the traditional sense, but rather a build plate adhesion aid. When comparing raft vs. brim, both serve to improve first-layer adhesion, but they differ significantly in cost and complexity. A raft is more time-consuming and material-intensive, while a brim consists of a single-layer extension around the base of the model. Brims are quick to generate, use minimal material, and are often sufficient for improving print reliability.

Purpose of a Brim

The main purpose of using a 3D printing brim when producing your designs, is to help the bed adhesion of your objects. The brim makes a much larger contact area, which helps risk of corners and edges lifting while printing. The brim can also provide more stability for tall objects or narrow models, making them less likely to fall over because of limited footprint or printer-induced vibrations.

When to Use a Brim in 3D Printing?

Okay, so now you know the definition and purpose of a brim, let’s look at when to use them.

Model with a Small Contact Area

Generally speaking, it is a good idea to use brim when printing small models that do not have much contact area on the bed itself. Think of it like glue, adding some more to help fix the model during printing. Small models generally require more anchoring.

Materials with High Risk of Warping

Some 3D printing filaments are at a greater risk of warping than others. For instance, ABS, ASA and nylon exhibit relatively high thermal shrinkage as they cool. This shrinkage generates internal stress, increasing the likelihood of edges or corners lifting and losing proper adhesion to the build plate. The same goes for some polycarbonate filaments as well.

Tall & Slender Models

Like models that have a small contact area, if the 3D printed object is very tall or very narrow, it can also be necessary to use brims since these designs have a high center of gravity that makes it easy for them to topple over or detach. By increasing the effective base area, a brim improves stability and reduces the risk of detachment.

Models with Pointed or Narrow Bases

If your models don’t have fully flat bottoms, it can also be a good idea to add a brim as it will add base contact area to 3D print​ models for improving lateral stability and helping the print remain securely attached to the build plate.

Marginal Bed Adhesion

If first-layer adhesion is inconsistent or borderline, and the printer is otherwise properly calibrated, using a 3D printer brim can improve overall print reliability. Think of it as a safety net that provides additional bed adhesion.

Common Cases of Brim Misuse

On the other hand, some models might not need a brim, and not using one can help speed up the print and cut down on material use.

Models with a Large, Flat Base

If your model already has a large and flat bottom portion, it will most likely adhere well to the print bed on its own. Therefore, you will not need to consider brim 3D printing techniques.

Unnecessary brim with a flat base
Unnecessary brim
model from Quentinyu@Makerworld

High-Detail or Aesthetic Parts

Some models might traditionally need a brim, but please remember that the brim leaves a rough edge where it detaches, requiring post-processing. Brims can leave minor marks along the base of a print. This can be a concern for parts where the bottom surface is visually critical, but it is usually acceptable for prints that will undergo extensive post-processing.

Brims left minor marks along the base of a print
Brims left minor marks along the base of a print

Fix Problems Caused by Improper Settings

A brim cannot fundamentally solve the problems of gaps, unevenness and uneven line width in the first layer of prints. Brim should only be enabled when the first layer itself is perfect but still needs to prevent warping.

Using a brim instead of proper bed leveling and cleaning is wrong. A brim only increases surface contact, since it does not restore proper mechanical or surface adhesion.

How to Add a Brim in Slicer

Almost all popular 3D printing software makes it easy to add a brim to an existing 3D model. Below, we will take a look at some of the most common slicers.

Bambu Studio

When opening up Bambu Studio, first select your chosen 3D file in the prepare view section. Then click on the “Others” section, where you will then see 3D print brim settings. You can enable the brim here and then choose to adjust the brim width and gap parameters as you need.

Cura

In the print settings panel on the right, ensure you are in “Advanced” mode. For this to happen, you may need to click step 2, there are many settings configurations, so choose “Advanced”. Search for “Build Plate Adhesion Types” in the settings search bar. Set the “Build Plate Adhesion Type“ to “Brim”.

How to Set Brim Parameters

Ok, it is also important to know what the typical parameter settings look like. Below, we will provide what we have found works best for most prints, but feel free to experiment as you feel.

Brim Width

Typical range: 5–10 mm.

The brim width controls how far the brim extends from the model. Wider brims improve adhesion for tall or warp-prone models but use more filament and require more cleanup.

Brim Lines

Typical setting: 5–15 lines depending on model size.

The number of brim lines refers to the number of concentric lines around the model’s base. The more lines you add, the better adhesion to the bed while brim printing, but it uses more material and takes more time as well. So balancing this out can be a good idea.

Brim Gap

Typical setting: 0–0.4 mm.

The gap setting decides how wide the gap between the brim and the model itself is. The wider the gap, the easier removal. But the wider you make the brim object gap, the less adhesion to the bed the brim will actually provide.

Brim Type

Finally, you will also get the option to choose between some different types of brims. Most slicers have the following options at the very least. Full brim is the most common, but the outer-only brim can be a good option as it reduces the number of contact points, making it easier to remove afterwards.

  • Full brim: Standard, connects to all edges
  • Outer-only brim: Only outermost perimeter (Cura)
  • Inner brim: Experimental for specific cases

Conclusion

A brim is a simple but powerful tool in 3D printing to combat warping and improve bed adhesion for models with challenging geometries or made from tricky materials. While a brim is important, a well-calibrated 3D printer and a properly cleaned bed surface are most important to get the best and most reliable results. Happy printing!

]]>
https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/what-is-a-brim-in-3d-printing-and-when-to-use-it/feed/ 0
ASA vs. ABS: Welches Filament ist richtig für dich? https://blog.geeetech.com/deutsche-kolumne/asa-vs-abs-welches-filament-ist-richtig-fur-dich/ https://blog.geeetech.com/deutsche-kolumne/asa-vs-abs-welches-filament-ist-richtig-fur-dich/#respond Sat, 20 Dec 2025 10:37:58 +0000 https://blog.geeetech.com/?p=13500 Ob du Bauteile für den Innenraum druckst oder langlebige Modelle für draußen planst: Die Wahl zwischen ASA vs ABS gehört zu den grundlegenden Entscheidungen im 3D-Druck. Beide Materialien wirken auf den ersten Blick ähnlich, unterscheiden sich aber in Struktur, Verarbeitung und Einsatzzweck. Dieser Beitrag gibt einen Einblick.

ASA vs. ABS: Materialzusammensetzung

Wenn du vor der Entscheidung ASA oder ABS stehst, hilft ein Blick auf die Grundlagen: Beide Kunststoffe werden als 3D Drucker Filament eingesetzt, unterscheiden sich aber in ihrer inneren Struktur – und genau das macht den Unterschied im Alltagseinsatz aus.

Klassisches ABS Filament basiert auf drei Bausteinen: Acrylnitril, Butadien und Styrol. Dieses ABS Material ist zäh, formstabil und seit Jahren ein Standard im technischen Filament. Der Nachteil: Die Butadien-Komponente reagiert empfindlich auf Sonne und Wetter, was die Langzeitbeständigkeit im Außenbereich begrenzt.Zusammensetzung von abs

Beim ASA Filament – chemisch bestehend aus Acrylnitril, Styrol und Acrylat – wird das reaktive Butadien einfach durch ein stabiles Acrylat ersetzt. Dieses ASA Material behält viele Vorteile von ABS bei, ist aber deutlich besser gegen UV-Licht und Witterung geschützt. In der Praxis bedeutet das: Im direkten Vergleich ASA vs. ABS eignet sich ASA überall dort, wo du ein Filament UV-beständig brauchst, etwa für Outdoor-Bauteile, Gehäuse oder langlebige Funktionsbauteile im Freien.

Zusammensetzung von ASA

ASA vs. ABS: Eigenschaften

Damit du die Unterschiede im Filament besser einordnen kannst, lohnt sich ein direkter Blick auf die wichtigsten Kennwerte. Sowohl ASA Filamente als auch ABS Filament sind robuste Konstruktionskunststoffe, unterscheiden sich aber deutlich bei Wetterbeständigkeit, Verarbeitung und Emissionen.

Damit du die Unterschiede im Filament besser einordnen kannst, lohnt sich ein direkter Blick auf die wichtigsten Kennwerte. Sowohl ASA Filamente als auch ABS Filament sind robuste Konstruktionskunststoffe, unterscheiden sich aber deutlich bei Wetterbeständigkeit, Verarbeitung und Emissionen.

Eigenschaft

ASA Filament

ABS Filament

Praxisbedeutung

Wetter- & UV-Beständigkeit

Sehr gute UV-Stabilität, farb- und formtreu im Außenbereich

Schwache UV-Beständigkeit, Vergilbung und Materialabbau im Freien möglich.

ASA ideal für Outdoor-Projekte; ABS besser im Innenraum einsetzbar (Unterschiede im Filament werden hier klar sichtbar).

Hydrolyse-Beständigkeit

Etwas höhere Feuchtigkeitsresistenz über längere Zeit.

Moderat; das Butadien im Material ABS reagiert empfindlicher.

Beide Filamente funktionieren in feuchten Umgebungen, ASA bleibt jedoch langfristig stabiler.

Entflammbarkeit

Entflammbar, mit Additiven ggf. selbstlöschend – ähnlich wie ABS.

Ebenfalls entflammbar und in vielen mit Additiven ebenfalls selbstlöschend.

Nicht geeignet für Anwendungen, die eine hohe Flammhemmung ohne Zusatzstoffe erfordern.

Glasübergangstemperatur (Tg)

~100–110 °C

~100–105 °C

Beide Materialien widerstehen hohen Umgebungstemperaturen, z. B. im Auto.

Wärmeformbeständigkeit (HDT)

~95–105 °C unter 0,45 MPa.

~90–100 °C unter 0,45 MPa.

ASA minimal überlegen – wichtig für Bauteile mit ständigen Belastungen in warmen Umgebungen.

Thermische Ausdehnung

Hoch (ca. 8 × 10⁻⁵ /°C).

Sehr hoch (ca. 9 × 10⁻⁵ /°C).

Beide benötigen einen geschlossenen Bauraum und ein beheiztes Druckbett, um Warping zu vermeiden.

Druckeranforderungen

Geschlossene Kammer empfohlen (ASA 3D Druck läuft stabiler bei warmer Umgebung).

Geschlossene Kammer erforderlich.

Ohne warmen Bauraum steigt die Gefahr von Layer-Delamination bei beiden.

Warping-Neigung

Stark vorhanden, aber geringer als ABS.

Sehr stark und typisch für ABS.

ASA leichter zu kontrollieren; ABS erfordert sehr präzise Druckbedingungen.

Dämpfe / Geruch

Starker Geruch, gute Belüftung notwendig.

Sehr intensiver Geruch; teils beim ABS Drucken als giftig wahrgenommen

Beide nur mit Belüftung verwenden; ABS kritischer durch VOC-Emissionen.

Nachbearbeitung

Schleifen, Lackieren, Kleben möglich; Aceton-Glättung eingeschränkt umsetzbar.

Sehr gute Aceton-Glättung, hoher Glanz möglich.

ABS bietet beste Oberflächenpolitur; ASA punktet bei Outdoor-Einsatz.

ASA vs. ABS: 3D-Druck

Beim ASA 3D Druck und beim Druck mit ABS fällt vor allem die unterschiedliche Prozessstabilität auf: ABS neigt stark zu Warping und Rissbildung, weil es empfindlich auf Zugluft reagiert. ASA Filamente sind temperaturstabiler gegenüber Umwelteinflüssen, wirken jedoch geringfügig spröder.

3D-Druck-Einstellungen

Ein zentraler Unterschied liegt in der Temperaturführung: Die ASA Filament Temperatur liegt meist 5–10 °C höher als bei ABS. Beim Lüfter gilt: ABS benötigt geschlossenes Drucken ohne Kühlung, während man ASA drucken mit leichter Luftzufuhr deutlich stabilisieren kann.

Geeetech ABS – empfohlene Einstellungen in Cura:

  • Düsentemperatur: 230–250 °C
  • Heizbett: 80–100 °C
  • Retract-Distanz: 6 mm (Bowden), 2–3 mm (Direct Drive)
  • Retract-Geschwindigkeit: 25 mm/s
  • Kühlung: 0 %, erste Schicht 0 %
  • Haftung: Brim

Geeetech ASA – empfohlene Einstellungen:

  • Düsentemperatur: 240–270 °C
  • Heizbett: 80–110 °C
  • Kühlung: 40–50 %, erste Schicht 0 %
  • Haftung: Brim & Skirt

Oberflächenqualität

ABS liefert matte bis glänzende Oberflächen und lässt sich hervorragend polieren. ASA bleibt überwiegend matt, ist aber deutlich UV-beständiger und somit ideal für Anwendungen im Außenbereich.

ASA vs. ABS: Nachbearbeitung

In der Nachbearbeitung zeigt sich ein klarer Unterschied in der Entscheidung ASA vs. ABS: ABS Filament lässt sich hervorragend mit Aceton glätten, schleifen, lackieren und kleben – besonders attraktiv, wenn du eine hochglänzende Oberfläche anstrebst. ASA Filament kann ebenfalls geschliffen, geklebt und lackiert werden, wirkt beim Aceton-Finish jedoch etwas empfindlicher und benötigt mehr Sorgfalt. Für dekorative Projekte liefert ABS daher meist den glatteren Effekt, während ASA drucken optisch eher matt bleibt, dafür aber im Außenbereich beständiger ist – ein typischer Materialkompromiss bei beiden Filament-Typen. ABS eignet sich besser für die Nachbearbeitung und optische Optimierung.

Anwendungen

Ob ASA oder ABS sinnvoll ist, hängt von Temperatur- und Umgebungsanforderungen ab. Im Innenbereich punktet ABS mit seiner einfachen Nachbearbeitung und eignet sich für technische Bauteile, Modellbau oder robuste Gehäuse, gerade wenn das Material ABS hitzebeständig eingesetzt wird. ASA Material spielt seine Stärke draußen aus: UV-beständige Teile für Fahrzeuge, Gartenobjekte oder Drohnenrahmen bleiben stabil und farbecht. Wenn du 3D Drucker Filament kaufen möchtest, solltest du dich daher an der späteren Nutzung orientieren – Indoor oft ABS, Outdoor nahezu immer ASA.

Fazit

Beim Vergleich ASA vs. ABS zeigt sich: Beide sind vielseitige 3D Drucker Filament Optionen. ABS 3D Druck überzeugt mit Nachbearbeitbarkeit und hohen Detailoberflächen, während ASA 3D Druck für langlebige, wetterfeste Anwendungen die bessere Wahl ist. Für präzise Funktionsbauteile im Innenraum arbeitest du effizient mit ABS Filament, für starke Außenteile mit ASA Filament. Die Entscheidung ASA oder ABS hängt deshalb weniger vom Drucker ab, sondern von deinem Projektziel – und genau danach solltest du dein nächstes 3D Drucker Filament kaufen.

]]>
https://blog.geeetech.com/deutsche-kolumne/asa-vs-abs-welches-filament-ist-richtig-fur-dich/feed/ 0
The Ultimate Guide to Clear 3D Filament https://blog.geeetech.com/materials/the-ultimate-guide-to-clear-3d-filament/ https://blog.geeetech.com/materials/the-ultimate-guide-to-clear-3d-filament/#respond Tue, 09 Dec 2025 10:50:09 +0000 https://blog.geeetech.com/?p=13486 Creating, designing and printing new objects is always exciting, no matter the specific filament. However, when adding in unique and special materials, you can easily add yet another layer of interest to your prints. For instance, clear 3D printing filament that is transparent can not only be used to great visual effect, but also create some new and interesting uses. So let’s take a closer look at this guide where we cover all you need to know. Enjoy!

What Makes Filament Clear?

There are three major components that make up transparent filament, whether we’re talking about clear PLA filament or others 3D printer filament. In short, it will depend on the overall composition and purity of the base material used in the clear filament, meaning what particles and additives are used. The internal structure also plays a role when it comes to the manufacturing process, as the structure should be quite uniform and without pigmented materials.

Geeetech clear PLA filament
Geeetech clear PLA filament

And finally, when chasing clear 3D prints, it is also important that light is able to pass the transparent 3D printer filament uninterrupted. This depends on how light interacts with the material’s microstructure. The core principle lies in whether there are “light-scattering centers” inside the material, meaning that the light should not come into contact with a dense group of polymers or particles. Below is a quick table showing the characteristics necessary.

Key FactorWhat Makes It ClearWhat Makes It Opaque 
CompositionPure base material with minimal additives.Loaded with pigments (e.g., colorants, glitter) or fillers that block light.
Internal StructureSmooth and uniform at a microscopic level.Filled with countless particles that act like a dense “light-blocking fog.”
Light’s JourneyLight passes straight through or with only minor haze.Light gets lost—constantly scattered and absorbed until no light gets through.

The base material used should be made up of amorphous polymers, as the microstructure (the molecules) will have a random arrangement. This makes it possible for light to flow through the filament without scattering and diffusing the light, thus keeping the 3D printed object transparent to a large degree. On the other hand, semi-crystalline polymers form compact microstructures that can have colored pigment for an opaque result.

The additives used in the transparent 3D filament are another important factor. Typically, manufacturers often use a range of different additives to enrich their filament with vibrant colors, add a fake wood look thanks to sawdust or metal flakes, etc. When it comes to the best transparent filament types, they don’t have dyes, fillers or matting agents included, as this will break up the light and make the object more opaque.

Now that you have selected a clear filament and loaded it into your printer, you will also need to control the printing settings for the best results. We cover this in more detail below, so for now, all you need to know is that each layer can become a small boundary in itself where the light can refract and reflect, which is the main issue people experience when trying clear 3D printing techniques.

How to Choose the Best Clear Filament?

To select the most suitable clear filament, you need to balance optical clarity, tensile strength and printability according to your project’s needs. PLA provides ease of use and printability, whereas PETG is more durable and has better optical clarity. However, printing with PETG has more complicated print parameters than printing with PLA.

Translucent PLA vs PETG​

Translucent PLA prints easily and consistently, making it ideal for beginners or projects where light diffusion is acceptable rather than true clarity. It retains detail well but traps more visible layer lines, limiting how transparent it can become even with post-processing.

Translucent PETG prints feature much stronger interlayer adhesion and can withstand higher temperatures and, when tuned properly for drying and other properties, may be much clearer. Although stringing and drying conditions must be more closely controlled on PETG prints than on other prints, PETG would be more desirable if a glass-like effect is desired.

Due to the differences in their molecular structures and the resulting different ways of light scattering, under normal printing settings, Translucent PLA looks more milk white, PETG is clearer.

Translucent PLA vs PETG​
Translucent PLA vs PETG​

What Can Clear 3D Printer Filament Be Used For?

A clear 3D printing filament is best suited for uses that require light transmission and transparency. It may be used for creating lenses and lighting cover-ups and as a decoration item, prototype model with hidden elements, container for various fluids, and artworks portraying glass and crystal.

In many functional scenarios, your detailed prints can also be utilized as housing enclosures, inspection tools for laboratories and engineering models that enable individuals to see through them to observe the internal structures of their part designs. When creating parts and when producing prints for design, using transparent filaments provides an aesthetically unique style that can be unlocked only with clear filaments, making them a great choice for these purposes.

Understanding your own intentions and the uses of the filament is the key to choosing the best clear filament.
If you need to print objects that can be used at room temperature indoors, choose PLA. If you need to print functional, tough, impact-resistant, shock-resistant objects that can be used at high temperatures, then PETG is a more suitable choice.

How to Improve Transparency in 3D Printing?

In 3D printing, optically clear objects mean managing moisture, printing parameters, material extrusion, and surface finishes. Small deficiencies such as micro-bubbles, layer lines, and layer adhesion can cause objects to appear cloudy and whitish due to deflected light pathways. These methods can be employed for optimal transparency and more glass-like objects.

Printing Settings

In 3D printing, optically clear objects mean managing moisture, printing parameters, material extrusion, and surface finishes. Small deficiencies such as micro-bubbles, layer lines, and layer adhesion can cause objects to appear cloudy and whitish due to deflected light pathways. These methods can be employed for optimal transparency and more glass-like objects.

Drying Filaments

This is the most important phase. Dehydration-sensitive materials such as PETG, TPU, and nylon tend to create micro-bubbles upon being exposed to heat. It is important to dry the materials prior to use and then package and seal them to prevent them from getting wet again.

Increase the Printing Temperature

A slight increase in the nozzle temperature above the normal range can be beneficial for bonding layers, which reduces internal voids, then light is more likely to pass in a straight line inside. Thereby increasing transparency.

However, too much heat can compromise the material properties and strength and thus lower transparency. Therefore, it is very important to control the temperature range, generally, +5~15℃.

Reducing the Printing Speed

By printing at a slower rate, you allow extra time for the filament to melt and flow completely, which improves the interlayer adhesion strength and creates a smoother, clearer surface finish. Slower printing also creates less internal stress on the filament and fewer bubbles trapped within the filament. It is recommended to set the printing speed at 20~40 mm/s and make adjustments based on the specific situation.

Increase the Layer Height

By setting your layer height to a range between 0.2 ~ 0.28mm, this ensures fewer layers overall that end up being printed, thus creating fewer spots on each item that light scatters when passed through your print. A larger nozzle with a range between 0.6 and 0.8mm ensures greater clarity is achieved on prints due to the thicker lines produced by your nozzle. However, it is crucial that the printing temperature be simultaneously raised and the printing speed reduced to ensure that these thicker material layers can be fully fused to form a uniform whole. Otherwise, merely increasing the size will instead make the printing defects more obvious.

Enable Spiralize Outer Contour (Vase Mode)

For single-wall prints without top layers, Vase Mode creates a continuous, seamless extrusion. This eliminates layer seams and discontinuities, dramatically improving optical clarity in hollow or display-only models. Following is a transparent PETG lampshade printed in vase mode.

A transparent PETG lampshade printed in vase mode
Lampshade printed in vase mode by Geeetech transparent PETG filament

Using Transparent or Glossy Printing Plates

A smooth, reflective build surface improves the clarity of the bottom layer and reduces surface haze. Clean the plate thoroughly to avoid artifacts that propagate upward through the print.

Enable “Minimum Retraction” or Disable Retraction

Retraction can create micro-defects, stringing, or small blobs, all of which are very visible in transparent materials. Reducing or disabling retraction minimizes these marks. If needed, combine this with good pressure advance calibration for consistent extrusion.

Reduce the Infill Density

And finally, lower infill allows more uninterrupted light transmission through the model. For maximum clarity, use low-density infill or print hollow parts when the design permits.

Clear PETG with different infill density, the lower the filling density, the higher the transparency
Clear PETG with different infill density, the lower the filling density, the higher the transparency

Post-Processing

The transparency of a print can be greatly improved after it has been printed. When using a method called post-processing, a clear print looks like a piece of glass, if you will. The post-processing methods below will help you do just that.

Sanding

Sanding with progressively finer grits of around 600 to 3000 grit size is another way to remove surface imperfections and layer lines. This way you can allow more light to pass through your 3D printed objects. You still need to keep an even surface finish when sanding, as an unevenly-sanded surface will create distortion in the final print.

Polishing

Polishing the print with a mechanical or manual process gives the surface its shine and removes any tiny scratches from the sanding process. In the process of polishing your print yourself, plastic-safe material polish works best.

Epoxy Coating

Applying a thin layer of clear epoxy resin will fill the micro-gaps between printed layers and create a smooth and glossy transparent finish for your printed part. In addition to creating a smooth finish, epoxies will increase the strength of the printed part.

Steam Polishing (ABS Only)

Using steam, acetone vapors can melt the top layer of your ABS print to smooth out the layer lines and create a glassy finish. To avoid melting your print too much or damaging intricate details, it must be done very carefully.
More post-processing information, please refer: 3D printing post-processing.

Conclusion

With the help of a quality setup and although at first it may seem difficult to achieve clear and clean 3D printed precision parts using clear filaments, clear models can definitely be produced. This guide should provide you with all the needed information to successfully create your preferred styles of prints. Happy printing!

]]>
https://blog.geeetech.com/materials/the-ultimate-guide-to-clear-3d-filament/feed/ 0
The Ultimate Guide to ASA Filament for Durable and Weather-Resistant 3D Printing https://blog.geeetech.com/materials/the-ultimate-guide-to-asa-filament-for-durable-and-weather-resistant-3d-printing/ Mon, 01 Dec 2025 08:56:20 +0000 https://blog.geeetech.com/?p=13472 When you wish to 3D print your new designs, you are met with many different options of printing filament to choose from. You could go for ABS or PLA as they are quite common and affordable, but depending on your needs and how the model will be used, there are some interesting alternatives.

One of these is called ASA, which is short for acrylonitrile styrene acrylate, and this filament is amazing for use outside as well as for projects where you need a solid and robust material that can withstand a number of different environments and last a long time. So let us take a closer look at the ASA filament.

What Is ASA Filament

Many people consider ASA plastic filament to be an upgrade over ABS, as both materials share many of the same properties. Where they differ lies in the difference between the acrylate used in ASA and the butadiene used in ABS. The difference is particularly important when it comes to prints being exposed to UV light, such as from the sun, since butadiene is not really resistant to these rays.

ASA, on the other hand, is developed to be a highly resistant material, thanks to the graft polymerization process using acrylate rubber. So when it comes to UV radiation, it is tough in terms of handling weathering from the environment, and even chemical reactions. In short, ASA filament is a better option for most outdoor projects and a good replacement for prints that normally call for using ABS.

Properties of ASA in 3D Printing

We’ve briefly touched on the overall ASA filament properties when used for 3D prints. Let us take a closer look at the specifics with our detailed table, providing an easy overview, making it easy to figure out the best bed temperature when printing ASA, for instance.

PropertyDetails
Print Temperature240–270 °C
Bed Temperature80–110 °C
Tensile Strength~35–37 MPa
UV ResistanceExcellent, one of ASA’s main strengths
Weather ResistanceExcellent, ideal for outdoor use
Heat ResistanceHigh, better than PLA and ABS
WarpingModerate, similar to ABS, enclosure recommended
Print DifficultyMedium/High
Surface FinishMatte, good layer adhesion

Advantages and Disadvantages of ASA Filament

Given the properties seen above, we can discuss the pros and cons of using ASA filament in 3D models, and more easily figure out what applications and specific designs are best suited for this material.

Advantages

The main advantage over similar types, such as ABS, or even PLA and PETG, is that ASA has an exceptional resistance towards UV radiation and weathering. This not only impacts the discoloring which often happens with other materials, but it also means the overall strength of your models will stay in much better shape for a longer time.

And speaking of mechanical strength, ASA is great when looking at numbers for impact resistance and tensile strength, due to the shared similarities to ABS. You can easily use ASA in both your prototype designs as well as functional projects, without worrying whether it will last.

ASA also has a great glass transition temperature score of around 100°C, which means the material can withstand environments or exposure to high temperatures. In fact, it even outscores PLA which is known to be a great  choice in scenarios where this matters. As a result, ASA will not deform when inside a car on a hot summers day for instance, unlike many other materials.

There’s also something to mention when it comes to chemical resistance: ASA can resist degradation from many of the most typical chemicals in our natural world. Both acids and alkalis are no match for ASA, with oils and greases also having a tough time with the filament. But you can still easily sand, paint or even glue ASA materials, making post-processing easy.

Disadvantages

There are two main disadvantages when it comes to ASA in 3D printing applications. The first one is warping and shrinking, since the individual components together make for a material that can more easily warp or separate layers, thanks to the high temperature during printing with ASA. Experienced 3D printing hobbyists can remedy this by using a well-heated print bed and improve further by enclosing the printer.

The other potential issue is the ​ASA filament fumes produced when printing. ASA releases what is called styrene fumes, that not only smell strongly but can also be irritating for some people. It is recommended to print with good ventilation or filtration systems when using ASA, or at least print in a garage or shed and only briefly be present while the process takes place.

Tips of Printing ASA Filament

There are quite a few different manufacturers producing ASA 3D filament, making it difficult to provide instructions that will work well for all. Therefore, we have used Geeetech ASA 3D printer filament as our baseline, where we have spent time tweaking the values during printing to find a set of perfect ASA print settings:

PropertyBest Value
Nozzle temperature240-270 ℃
Bed temperature80-110 ℃
Cooling fan speed40-50%
Initial layer cooling speed0%
Build plate adhesionBrim & Skirt

ASA vs ABS

Many people tend to be indecisive between ASA and ABS, therefore we think it is fitting to briefly discuss the differences between ASA and ABS in 3D printing. We’ve also written a more extensive blogpost on this particular topic, which you can find here:  ASA vs. ABS: Which Is the Ultimate Value Champion in 3D Printing.

If you wish to just get the quick explanation, ASA is better for UV resistance. ABS will often turn brittle and lose color when outside, while ASA will stay stable. They both share similar properties when it comes to mechanical strength. Use ABS for indoor, functional parts where cost is a key factor. Choose ASA for any part that will be exposed to sunlight, rain, or variable outdoor conditions.

Neither ABS nor ASA is super easy to print with, especially when looking at something like PLA as an alternative. However, if you have the necessary setup both ABS and ASA can produce great results without much trouble. ABS filaments are slightly better in this aspect, as they do not warp nearly as much in general. ABS can also be a bit cheaper.

Applications

There are many different areas, hobbies and industries where ASA is a great material. Below we’ve provided a list of examples based on three different categories, but there are of course many others. And when all is said and done, it will ultimately depend on your own preferences and needs for the model and application.

Outdoor Applications

ASA printed the Mounting bracket and planter
ASA printed mounting bracket and planter
  • Planters
  • Irrigation parts
  • Tool handles
  • Exterior trim
  • License plate holders
  • Custom side mirrors
  • Electrical enclosures
  • Outdoor sensor casings
  • Mounting brackets for solar lights
  • Drone bodies
  • GoPro mounts
  • Outdoor signage

High Mechanical Strength and Heat Resistance Applications

ASA printed Dashboard components
ASA printed dashboard components
  • Functional prototypes
  • Dashboard components
  • Engine bay brackets
  • Air ducts
  • Router enclosures
  • Raspberry Pi cases
  • Power tool housings
  • Custom jigs and fixtures
  • Machine parts
  • End-use functional components

Long-Lasting Required Applications

  • Architectural models
  • Custom tools and jigs
  • Replacement appliance parts
  • Laboratory equipment housings
  • Educational models and kits
  • Museum displays and replicas
  • Outdoor furniture components
  • Industrial parts subject to wear

Conclusion

Whether you’re an engineer, a hobbyist, or a product designer, learning ASA can provide a world of opportunities to build practical and weather-resistant 3D printed models. When looking at ABS vs ASA filament, both are powerful and versatile materials, but ASA additionally provides great weather resistance.

]]>
ASA-Filament: Das Material für witterungsbeständige und langlebige 3D-Drucke https://blog.geeetech.com/deutsche-kolumne/asa-filament-das-material-fur-witterungsbestandige-und-langlebige-3d-drucke/ Wed, 26 Nov 2025 06:34:05 +0000 https://blog.geeetech.com/?p=13458 Ein 3D-Drucker Filament, das sehr witterungsbeständig ist? Ja, das gibt es!

ASA ist ein Filament material, das nicht nur gegenüber Sonne und Regen, sondern auch gegen Hitze und Chemikalien beständig ist. Andere Filamente, wie ABS, die ähnlich robust und schlagfest sind, weisen meist eine sehr geringe Witterungsbeständigkeit auf. Daher wird ASA-Filament besonders gerne im Outdoorbereich verwendet.

Was ist ASA

Acrylinitril-Styrol-Acrylat (ASA) ist ein Thermoplast, der als 3D Drucker Filament im Bereich Outdoor-Equipment immer beliebter wird. ASA wird neben dem 3D Druck auch in der Industrie eingesetzt. ASA-Material ist ein Filament, das UV-beständig ist und auch bei Hitze und Feuchtigkeit keine Schäden aufweist. Der ASA Filament ist dem ABS-Filament sehr ähnlich, wird aber in vieler Hinsicht als die bessere Version von ABS bezeichnet.
ASA hat drei Hauptbestandteile, die für Festigkeit, leichte Verarbeitung und für UV- sowie Wetterbeständigkeit sorgen.

Geeetech ASA Filament. Orange


Eigenschaften von ASA-Filament

Es gibt einige Merkmale der ASA-Filamente, die das Filament besonders beliebt für Outdoor-Anwendungen machten.

  1. Witterungsbeständigkeit: ASA-Filament ist sehr UV-beständig und wird auch bei viel Hitze und Sonne nicht spröde oder beschädigt.
  2. Temperaturbeständigkeit: ASA-Filament ist im Vergleich zu PLA 3D Filament sehr temperaturbeständig (bis zu 90-100 Grad Celsius). ASA 3D Drucke sind also perfekt für Anwendungen, die hohen Temperaturen, wie zum Beispiel Sonne, ausgesetzt sind.
  3. Mechanische Festigkeit: ASA ist zäh, hart und schlagfest und findet dadurch in vielen Bereichen Anwendung: funktionale Bauteile, Vorrichtungen, Gehäuse etc.
  4. Druckqualität: Warping ist sehr gering, Layerhaftung ist gut und beim Druck entstehen glatte Oberflächen, wenn man ASA-Filamente verwendet.
  5. Chemische Beständigkeit: beständig bei Ölen, Lösungsmitteln, Fetten, Wasser und Wetter.

Es gibt ein paar Nachteile, die wir kurz und knapp ansprechen möchten:

  • Druck ist anspruchsvoller als PLA
  • Es entstehen Gerüche und Dämpfe
  • Ohne geschlossenen Druckraum können Probleme beim Druck entstehen
  • Vergleichsweise teuer

Tipps zum Drucken mit ASA-Filament

Der Druck mit ASA-Filament bedarf bestimmter Einstellungen und Vorrichtungen. Je nach Hersteller werden bestimmte Bedingungen benötigt, um optimal drucken zu können.

Für Geeetech ASA sind folgende Einstellungen optimal:

Düsentemperatur: 240–270 °C

Betttemperatur: 80–110 °C

Lüfterdrehzahl: 40–50 %

Kühlgeschwindigkeit der ersten Schicht: 0 %

Haftung der Bauplattform: Brim & Skirt

Wird mit einem anderen ASA-Filament gedruckt, sollten die optimalen Druckeinstellungen, ASA-Temperaturen etc. mit den Empfehlungen des Herstellers abgeglichen werden.

ASA vs ABS

ABS und ASA werden oft verglichen, da einige Eigenschaften ähnlich sind, die Druckbarkeit beider sehr anspruchsvoll ist und beide sehr robust sind. Es gibt aber einige Unterschiede der Filamente.

ASA vs ABS

Eigenschaften

ABS

ASA

UV-Beständigkeit

Niedrig, vergilbt, spröde

Sehr hoch

witterungsbeständig

niedrig

hoch

Temperaturbeständig

80-90 Grad

90-100 Grad

Mechanische Festigkeit

Robust, schlagfest

Vergleichbar robust

Druckbarkeit

Anspruchsvoll, Risiko für Warping

Etwas besser, aber auch anspruchsvoll

Geruch

stark

stark

Oberflächenqualität

Matt bis glänzend, vergilbt

Glatt, farbstabil

Preis

günstig

teurer

Anwendung

Funktionsteile im Innenbereich

Outdoor-Teile

 

Neben den Eigenschaften von ASA-Filament und ABS Filament gibt es Aspekte, die sich beim ASA-Drucken vom Druck mit ABS unterscheiden.

ABS neigt beim Drucken zu Verformungen und Rissen, während ASA widerstandsfähiger gegen Umwelteinflüsse ist, jedoch eine etwas geringere Zähigkeit aufweist.

Die Drucktemperatur von ASA liegt üblicherweise 5 bis 10 °C höher als die von ABS.

Lüfterkühlung

  • ABS: Geschlossene oder extrem geringe Luftmenge
  • ASA: Ein leichter Luftzug (10–20 %) kann die Oberflächenqualität verbessern und Verformungen reduzieren.

Schlussendlich hängt die Wahl davon ab, in welchem Bereich das 3D Objekt Anwendung findet. Muss es witterungsbeständig sein, da es im Außenbereich genutzt wird, sollte ASA-Filament verwendet werden. Ist dies jedoch kein Kriterium, kann ABS verwendet werden, da dies günstiger ist.

Anwendungen

ASA-Material findet in vielen Bereichen Anwendung. ASA-Kunststoff wird in der Industrie, aber auch in anderen Sektoren verwendet.

  1. Im Outdoorbereich

Garten- und Campingzubehör, Bauteile für Terrassen, Zäune, Drohnen und Modellbauteile, Gehäuse für Wetterstationen

ein ASA-gedrucktes Gehäuse

  1. Anwendungen mit hoher mechanischer Festigkeit und Hitzebeständigkeit

Fahrzeugteile, technische Gehäuse, Werkzeuggriffe, mechanische Bauteile, Funktionsprototypen

ASA-gedruckte Drohnen

  1. Langlebige Anwendungen

Haushalts- und Industrieteile, Ersatzteile, Elektronikgehäuse

ASA-gedruckte Zahnräder

Fazit

ASA 3D Filament ist ein sehr robustes und witterungsbeständiges Filament. Auch wenn das ASA-Drucken etwas aufwendiger ist, spricht die Nutzung von diesem 3D Drucker Filament für sich, da die Eigenschaften sehr umfangreich sind. Die Anschaffungskosten sind etwas höher als die anderer 3D Drucker Filamente, aber auch hier sollte man in Betracht ziehen, dass man für einen höheren Preis ein sehr hochwertiges Filament erhält, das nicht nur ein UV beständiges Filament ist, sondern auch sehr robust ist und sehr gute Oberflächenqualitäten aufweist.

]]>
Skirt, Brim und Raft im 3D Druck: Grundlagen undAnwendung https://blog.geeetech.com/deutsche-kolumne/skirt-brim-und-raft-im-3d-druck-grundlagen-undanwendung/ Mon, 27 Oct 2025 11:21:44 +0000 https://blog.geeetech.com/?p=13400 Wer im 3D Druck saubere Ergebnisse erzielen möchte, weiß: Die erste Schicht ist entscheidend. Damit sich Bauteile nicht vom Druckbett lösen und Warping im 3D Druck vermieden wird, kommen drei Methoden zum Einsatz: Skirt, Brim und Raft. Dieser Leitfaden erklärt verständlich die Unterschiede zwischen den drei Verfahren und zeigt, wie du die Druckbetthaftung verbessern und saubere erste Schichten erzielen kannst.

Skirt

Bevor die erste Schicht Ihres Modells gedruckt wird, kommt häufig der Skirt zum Einsatz.

Was ist ein Skirt?

Beim Skirt 3D Druck zieht der Drucker eine oder mehrere Linien um das Modell, ohne es zu berühren. Diese Umrandung dient zur Vorbereitung: Das PLA Filament wird auf Temperatur gebracht, eventuelle Reste in der Düse werden entfernt, und der Materialfluss lässt sich prüfen. Der Skirt hilft, Extrusion, Bettnivellierung und Haftung zu kontrollieren, bevor der eigentliche Druck startet.

Vorteile des Skirts

Ein Skirt 3D Druck bietet eine einfache Möglichkeit, den Druckvorgang zu testen, ohne Material am Objekt zu verschwenden. Die gleichmäßige Linie zeigt sofort, ob das Filament sauber fließt und gut haftet. Gerade bei PLA Filament ist der Skirt ideal, um die Düse zu reinigen und den Fluss zu stabilisieren. Bei empfindlichen Materialien wie ABS kann der Skirt höher gedruckt werden, um eine kleine Schutzwand gegen Zugluft zu bilden – das reduziert Warping im 3D Druck.

Nachteile des Skirts

Ein Skirt 3D Druck trägt nicht direkt zur Haftung bei, da er das Modell nicht mit der Bauplatte verbindet. Bei größeren oder empfindlichen Bauteilen genügt er daher oft nicht, um ein Ablösen vom Druckbett zu verhindern. Zudem wird etwas PLA Filament verbraucht, das nach dem Start keine weitere Funktion erfüllt.

Brim

Der Brim ist eine erweiterte Form des Skirts mit einer entscheidenden Funktion.

Was ist ein Brim?

Der Brim 3D Druck erweitert den Skirt um eine entscheidende Funktion: Er wird direkt mit der ersten Schicht des Modells verbunden und vergrößert so die Auflagefläche. Das Ergebnis des 3D Druck mit Brim ist eine flache, ringförmige Krempe rund um das Objekt, die die Druckbetthaftung verbessert und Warping beim 3D Druck deutlich reduziert.

Brim

Vorteile des Brims

Ein Brim 3D Druck eignet sich besonders für Materialien wie PLA und PETG, die beim Abkühlen zum Verziehen neigen. Durch die breitere Kontaktfläche haften Kanten und Ecken besser auf dem Druckbett. Gerade bei schmalen oder hohen Modellen – etwa Zahnrädern, Halterungen oder Türmen – sorgt der 3D Druck mit Brim für zusätzliche Stabilität. Er ist damit eine einfache und effiziente Lösung gegen PLA Warping, PETG Warping und Ablösungen während des Drucks.

Nachteile des Brims

Nach dem Druck muss der Brim entfernt werden. Dabei kann am Rand eine feine Linie entstehen, die leicht nachbearbeitet werden sollte. Bei sehr komplexen Geometrien ist das Entfernen etwas aufwändiger. Der Boden des Modells bleibt jedoch glatt, da der Brim nicht unter dem Objekt, sondern nur seitlich gedruckt wird.

Der Brim bildet eine Linie am Rand.
Der Brim bildet eine Linie am Rand.

Raft

Wenn sich auch ein Brim nicht als ausreichend erweist, um ein Modell sicher auf der Bauplatte zu fixieren, ist der Raft die ultimative Lösung.

Was ist ein Raft?

Ein Raft 3D Druck bezeichnet eine horizontale Gitterstruktur, die unter das Modell gedruckt wird. Das Objekt steht also auf einem sogenannten Floß, das eine stabile Basis bildet. Diese Methode wird eingesetzt, wenn Materialien schwer auf der Druckplatte haften oder zum ABS Warping neigen. Das Raft gleicht Unebenheiten aus und verhindert, dass sich das Modell beim Drucken vom Bett löst.

Raft 3d druck

Vorteile des Rafts

Ein Raft 3D Druck sorgt für maximale Haftung und kann die Druckbetthaftung verbessern. Er reduziert Schrumpfung, gleicht minimale Unebenheiten aus und verhindert zuverlässig, dass sich das Modell im 3D Druck vom Bett löst. Geeignet ist diese Methode besonders für Nylon oder ABS Filament, also Materialien, die hohe Temperaturen benötigen und stärker zum Verziehen neigen. Mit einem Raft 3D Druck schaffst du eine sichere Grundlage selbst bei großen oder technisch anspruchsvollen Teilen.

Nachteile des Rafts

Das Raft verbraucht am meisten Material und verlängert die Druckzeit. Nach dem Druck muss es entfernt werden, was bei feinen Strukturen etwas Geduld erfordert. Die Unterseite des Modells kann nach dem Entfernen leicht rau sein und sollte geglättet werden. Trotzdem bleibt das Raft die zuverlässigste Methode, um bei problematischen Materialien Warping im 3D Druck zu vermeiden.

Von links nach rechts: Die Bodenqualität von Drucken mit Skirt, Brim und Raft. Das mit Raft gedruckte Modell weist dabei die offensichtlich raueste Oberfläche auf.
Von links nach rechts: Die Bodenqualität von Drucken mit Skirt, Brim und Raft. Das mit Raft gedruckte Modell weist dabei die offensichtlich raueste Oberfläche auf.

Empfohlene Einstellungen

Mit Geeetech Druckern lassen sich alle drei Methoden präzise konfigurieren. Folgende Richtwerte bieten einen guten Ausgangspunkt:

  • Skirt 3D Druck: 2–3 Loops, Abstand zum Modell 2–6 mm
  • Brim 3D Druck: Breite 5–8 mm
  • Raft 3D Druck: Dicke 0,8–1,2 mm

Diese Werte bieten ein ausgewogenes Verhältnis zwischen Haftung, Materialverbrauch und Druckqualität. Zusätzlich sollten Druckbett-Temperatur und Nivellierung immer auf das verwendete Filament abgestimmt werden, um Warping im 3D Druck dauerhaft zu vermeiden.

Fazit

Skirt-, Brim- und Raft-Verfahren sind einfache, aber wirkungsvolle Methoden, um die Druckbetthaftung zu verbessern und Verzug zu vermeiden. Das Skirt-Verfahren dient der Vorbereitung und sorgt für einen sauberen Materialfluss, bevor der eigentliche Druck beginnt. Das Brim-Verfahren erhöht die Haftung bei Materialien wie PLA oder PETG und stabilisiert empfindliche Kanten. Das Raft-Verfahren bildet eine sichere Basis für ABS oder Nylon und minimiert Schrumpfung sowie Warping.

Mit Geeetech 3D-Druckern und den passenden Filamenten gelingen erste Schichten präzise und zuverlässig – die Grundlage für stabile, formgenaue und langlebige Druckergebnisse in der additiven Fertigung.

]]>
Slicing Introduction: What Is Slicing in 3D Printing? https://blog.geeetech.com/3d-printer/3d-printing-software/slicing-introduction-what-is-slicing-in-3d-printing/ Tue, 30 Sep 2025 08:13:00 +0000 https://blog.geeetech.com/?p=13374 The concept of slicing 3D models can be a bit confusing for newcomers to the wonderful hobby of 3D printing. But it is actually quite simple, so don’t worry. In this article, we will explain all you need to know, so that you can slice your 3D models correctly every time. Enjoy!

What Is Slicing?

3D slicing
3D slicing

Whenever you have a 3D design that you want to print, you will need to prepare the digital format for your printer. Instead of just having the complete “block” of your model, it is necessary to slice the model into smaller segments, the individual horizontal layers that the printer will actually produce.

This formatting is called slicing, and is therefore an important part of any FDM 3D printing process, as well as many other types of 3D printers. Think of each layer as representing a cross-section of the model that the printer builds sequentially, and that the slicing is responsible for actually keeping track of the layers and their position.

In simple terms, the slicing is “translate” the 3D model into a series of instruction files that the printer can understand and execute layer by layer.

Why Is Slicing Important in 3D Printing?

Since you will need to convert your 3D design into simple instructions that your 3D printer can understand, slicing can be considered one of the most important parts of the entire process. You may have a beautiful 3D model you created yourself, or picked off the internet, but if it has no slicing data you can not print it.

The actual data that is produced during this procedure influences numerous important factors, including printing quality, accuracy, as well as the overall result of your finished 3D printed product. It does this by controlling the trajectory the printer moves, the quantity of the substance that is extruded, as well as the adhesion that each layer is joined together. A good 3D slicer and appropriate 3D printing programs assure the best settings for speed, quality, as well as the utilization of the building material.

The Processes of Slicing

While the underlying technology of slicing might seem complex, it is actually relatively simple to slice any model with the right software. Oftentimes you can even slice your 3D prints with just a few clicks, so it does not need to be overly complicated, although you will often get better results by changing some parameters based on the specific print, the material you want to use and your actual printer.

Step 1: Import Model

Before you can slice anything, you will first of all need your 3D model as a digital file. There are different formats for this, but common ones include .STL or .OBJ files. These are the most used filetypes that you will typically get when you download a file on any of the larger sites.

Next, you will also need your slicing software. There are many different options to choose from here, so we will cover this part in more detail below. Once you have loaded your 3D model file into the slicer, you can then configure various settings depending on the desired results.

Step 2: Configure Settings

This is the most critical step. You’ll adjust a host of parameters based on your printer, filament, and desired print quality. If you download from another creator, they often include the important parameters you need to change, alongside the values they recommend.

  1. Layer height: The thickness of each printed layer. Smaller layers give smoother surfaces but take longer to print.
  2. Infill density and pattern: The internal structure of the part, which governs its strength and weight.
  3. Wall thickness: The thickness of the outer shell.
  4. Support structures: Automatically generated, removable scaffolds that prevent overhangs from collapsing during printing.
  5. Print temperature and speed.

The last of the most common parameters is the print temperature and speed. This is generally decided by the material used, so if you use TPU filament, ABS or some others 3D printer filament, you might change these settings in particular.

Step 3: Slice the Model

One you have set all your parameters as you want, you can then click “Slice model” in order to begin the automated process. Depending on the size of your model, how complex the shape is, and the various parameter values, this can take a few minutes on the shorter end or up to 20 minutes on slower devices with a large and complex model.

This is because it performs the “virtual slicing” on the model, along the Z-axis and generates precise printing paths for each layer that your 3D printer will then follow once it becomes time to actually print the model.

virtual slicing
virtual slicing

Step 4: Generate G-code

Most software applications will then save all these slices into a new file, known as G-code, which then not only stores all your virtual slice paths, but also saves information that the printer will use to know what temperature the hotbed should be, how much extrusion is needed and so on.

Step 5: Send to Printer

The last step before printing, is getting your G-code uploaded to your 3D printer. On your model and preference, you will usually be able to select doing this through a standard SD card, a direct USB, Bluetooth or through your WiFi or LAN networking. Once your 3D printer has received the G-code, you can then begin printing.

Introduction to Slicers

As we mentioned above, there are different types of 3D printing software that you can use to slice your model. In general, they all convert 3D models into G-code instructions for the printer, so it becomes a matter of preference which type of software you end up choosing.

Simplify3D, Ultimaker Cura, PrusaSlicer

Among the most popular used slicers, you would see names like Simplify3D, Ultimaker Cura, and PrusaSlicer. They are either branded applications that come packaged with your specific 3D printer, or massively used third-party applications created by enthusiasts. Many of these programs have free and paid options, and they typically support a wide range of printers and materials.

Geeetech

3d printing software free: Geeetech
3d printing software: Geeetech

Looking back, the last 3D printing software we developed was Easy Print, and it’s still being used today.
Now, one new and noteworthy 3D printing software is the one we have launched and named Geeetech, which comes with a set of interesting features for everyone wanting to print easily and quickly. Currently, we only open the connection to Geeetech M1S. The software comes with some models that can be printed directly. More functions and models will be opened up in the future, such as easily slicing.

It will continually get new functions and slicing features, and we look forward to it becoming one of the best slicers for 3D printing for Geeetech users and anyone else interested in great results.

3d printing software: Geeetech
3d printing software: Geeetech

Conclusion

To sum it up, slicing is an extremely important part of any 3D printing process. It is important that you therefore understand why you need to slice your models, but also learn how to tweak the parameter values to get the best results. This can be tricky with some applications, so we recommend you try different types of 3D printing software and 3D slicer tools, in order to see what gives you accurate and high-quality prints.

In particular, we hope you will explore the new Geeetech 3D printing software to experience reliable performance, an intuitive slicer app, and optimized printing results. Have fun printing!

]]>
Why TPU Filament Absorbs Moisture Easily and How to Dry It https://blog.geeetech.com/materials/3d-printing-filament/why-tpu-filament-absorbs-moisture-easily-and-how-to-dry-it/ Sun, 28 Sep 2025 09:23:26 +0000 https://blog.geeetech.com/?p=13358 If you have ever used TPU 3D printer filament before, you might have had issues with a stringing mess created by the printer, or maybe bad layer adhesion. This is often caused by moisture in the TPU filament, which typically happens when it is not stored in an airtight container or package. So let us try to understand this phenomenon better, and how to fix the issue. Enjoy!

What Is TPU?

In short, TPU filament (Thermoplastic Polyurethane)  is a popular filament among hobbyists and pros alike to work with in their 3D printers, and is generally considered a user-friendly and cost-effective soft material. It is valued for its unique combination of rubber-like flexibility and plastic-like processability, which is ideal for use in a wide variety of situations and applications.

However, it also happens to be hygroscopic, meaning that it will pick up moisture from the air. You should be aware of this, because it not only impacts the way you should be dealing with the material, but also how much you need to take into consideration when storing your used TPU 3D printing filament.

If you want to learn more about TPU properties, answering questions such as “Is TPU Waterproof?” we have already written another article covering the filament in more detail here: TPU Filament Guide.

TPU’s Hygroscopic Properties

As mentioned above, TPU has hygroscopic properties, which make the material susceptible to moisture absorption. This is due to the overall chemical structure of the filament, and not something that can be avoided with TPU.

On a high level, you can think of TPU as a blend of hard and soft segments, which together provide both strength and flexibility to your 3D printed objects. However, this also creates “holes”, which in scientific terms are called polar sites that allow hydrogen to bond with the material.

Below, we have highlighted the TPU’s hygroscopic properties, and what the molecular structure looks like for the more scientific readers.

Strong Polar Chemical Bonds

  • Urethane Linkage (-NH-COO-): It is the basic chemical bond that constitutes the polymer backbone, which has a high polarity.
  • Carbonyl (C=O) and Amide (-NH-) Groups: These groups are very polar and have a natural affinity to water molecules.

Hydrogen Bonding Mechanism

  • Water molecules (H₂O) are also strongly polar.
  • Oxygen (O) and Nitrogen (N) atoms on the TPU chain form strong intermolecular hydrogen bonds with hydrogen (H) atoms in water molecules, effectively “trapping” them.

How to Identify Moist TPU Filament

Alright, now that you know TPU can absorb moisture, how do you figure out whether it is good for use, or whether you need to dry it before using in your 3D printer? Luckily, there are a few things you can do to identify wet filament symptoms. Below we have listed 3 different signs so you can identify moist TPU filament.

  1. Hearing cracking or popping noises from the hot-end while printing.
  2. Formation of small bubbles inside the filament or defects on the surface of a printed part or model.
  3. Wet or moist filament tends to feel tacky and/or brittle, losing some of its flexibility.
Wet filament vs. dry filament
Finished print showing identifier number 2 from the list above: small bubbles and defects. (Source: H3dSprint@printables)
Resilience of the moist filament  and dry filament
The resilience of the moist grey filament after bending is significantly lower than that of the dry blue TPU filament.

The most important point is number 3, that can be tested before you start printing with the filament. So try handling the TPU filament in your hand, and see if it feels sticky, or whether it might It feels stiffer and bounces back faster when bent than you remember. As you know, TPU is a rather flexible filament, so you should be able to bend it quite a bit before it snaps.

How to Prevent and Dry Moist TPU Filament

The best way to avoid any type of moist TPU 3D filament in your prints, is to store all your materials properly. Of course, if moisture has already occurred, we can also remedy it.
Generally speaking, there are two different methods that yield the most consistent results, while maintaining the flexible 3d filament properties.

Proper Storage

  • Use airtight, moisture-barrier bags, such as vacuum-sealable bags with desiccant.
  • Use dry storage containers.

There are also other options you can use, such as normal plastic bags with zip ties or tape ensuring a solid seal, although these are not as reusable and practical for frequent printing, and also more prone to failure.

Dry Filament

If you believe your TPU filaments might have trapped some moisture inside it, no amount of correct storage can fix the issue. You will instead need to manually extract the water by drying your TPU filament at home.

  • Ideally you would use a professional filament dryer, as it is the most effective method. In this case the recommended TPU drying temperature settings are 50–60°C for 4–6 hours.
  • Alternatively, you can sometimes get away with using your conventional oven, although this is more of a DIY hack and difficult to truly control the precise temperature. So be careful if you try this at home.

If you are printing quite often at home, it might be worth investing in a special filament drying machine, as they are becoming cheaper now that more people are using them, and can save you quite a bit of money and time in the long run.


On the other hand, if you would rather save your money, sometimes you can find 3D printing workshops and makerspaces in larger cities, that will have one you can use for a small fee, or even for free on occasion. This can be a good way to achieve dry filaments and test out the dry machines, and maybe even connect with other hobby enthusiasts!

More tips for storing and drying filament: How to Dry And Store 3D Printer Filament.

Conclusion

In the end, TPU is both a strong and flexible 3D printer filament, but the downside is that its hygroscopic properties make it prone to moisture absorption, which can quickly ruin a print. But this isn’t a lost cause.

If you know how to identify the warning signs of a wet filament and recognize that adequate filament storage is your first line of defense, the problem can become much easier to deal with. If moisture enters your filament, bear in mind that a filament dryer is worth the investment to guarantee your 3D prints will be reliable and of quality. A little preventative maintenance will keep your all-purpose TPU filament ready for your next great project.

]]>
FDM 3D Druck vs. Lasergravur: Welche Technologie passt zu dir? https://blog.geeetech.com/deutsche-kolumne/fdm-3d-druck-vs-lasergravur-welche-technologie-passt-zu-dir/ Sun, 31 Aug 2025 15:24:41 +0000 https://blog.geeetech.com/?p=13316 Wer heute eigene Druckprojekte realisiert – von Halterungen bis Geschenkideen – landet meist bei zwei Verfahren: FDM 3D Druck und Lasergravur. Beide sind erschwinglich, präzise und schnell umgesetzt.Dieser Leitfaden erklärt verständlich, FDM 3D Druck vs. Lasergravur, einschließlich ihrer Unterschiede und Einsatzbereiche, wie ein 3D Drucker funktioniert, welches Material 3D-Drucken für welche Ziele erfordert, und wann Laserschneiden brilliert.

Funktionsprinzip

Das Verständnis der beiden Prozesse beginnt in der Regel mit dem Verständnis, wie sie funktionieren.

Was ist FDM 3D Druck?

Beim FDM 3D Druck schmilzt ein FDM Drucker thermoplastisches Filament und legt es Schicht für Schicht ab. In der Praxis wählst du dein 3D Drucker Filament (z. B. PLA Filament), legst Düs­en­temperatur, Layerhöhe und Geschwindigkeit fest und der Drucker baut das Bauteil nach und nach auf. Kurz gesagt: ein 3D Drucker funktioniert durch präzises, wiederholtes Ablegen von geschmolzenes Filament.

FDM 3D Druck
FDM 3D Druck

Was ist Lasergravur?

Die Lasergravur nutzt einen fokussierten Strahl, der Oberflächen markiert, abdunkelt oder Material abträgt. So entstehen Logos, Muster, Texte und – je nach Setup – feine Schnitte. 3D Lasergravur erzeugt Relief-Effekte, während Laserschneiden Konturen in Plattenmaterial trennt. Besonders verbreitet: Lasergravur auf Holz und Lasergravur auf Leder für personalisierte Accessoires. Für präzise Schnitte braucht es einen passenden Laser zum Schneiden von Holz und Leder.

Lasergravur
Lasergravur

Materialien

Die Materialien, die beim 3D-Druck und der Lasergravur verwendet werden, sind völlig unterschiedlich. Lass uns einen genaueren Blick darauf werfen.

Materialien im FDM 3D Druck

FDM verarbeitet für das 3D Drucken eine breite Materialpalette: PLA Filament (einfach zu drucken, formstabil), PETG (zäher), ABS (temperaturfester), TPU (flexibel), ASA (outdoor-tauglich) oder Nylon (verschleißarm).Mit hochwertigem 3D-Drucker-Filament kannst du alles abdecken, von Dekorationsobjekten bis hin zu Montagehilfen. Tipp: Für sichtbare Oberflächen eignet sich PLA-Filament, für funktionale Teile je nach Beanspruchung PETG, ASA oder Nylon.

3D-Druck-Materialien
3D-Druck-Materialien

Materialien in der Lasergravur

Das Ergebnis der Lasergravur hängt stark vom verwendeten Material ab. Lasergravur für Holz liefert hohe Kontraste und eine warme Anmutung; Acryl eignet sich zum Markieren und sauberen Laserschneiden; Lasergravur auf Leder sorgt für haptische, dauerhafte Personalisierungen. Für klare, ausrissarme Konturen beim Laserschneiden mit Holz braucht es den richtigen Laser und eine stimmige Fokussierung; ein Laser zum Schneiden von Holz ist ideal für Frontplatten, Puzzle und Inlays. Auch 3D Lasergravur auf geeigneten Substraten erzeugt eindrucksvolle Reliefs.

Vorteile und Nachteile

Kein Verfahren ist perfekt. Wir werden oft von ihren Vorteilen angezogen, aber wir sollten auch ihre Einschränkungen verstehen und uns auf mögliche Einschränkungen einstellen.

Vorteile

Der FDM 3D Druck überzeugt vor allem durch die Erzeugung von echtem Volumen – selbst komplexe Geometrien mit Hohlräumen lassen sich problemlos umsetzen. Dank der großen Auswahl an 3D Druck Material und 3D Drucker Filament, von PLA Filament bis hin zu Nylon, findet sich für nahezu jedes Projekt das passende Material. Ein weiterer Vorteil ist die Geschwindigkeit bei Iterationen: CAD-Modell anpassen, neu drucken, testen – so lässt sich ein Entwurf in kurzer Zeit weiterentwickeln, insbesondere mit dem richtigen Filament, das ein zentraler Faktor für die Qualität des 3D Drucks ist.

Die Lasergravur und das Laserschneiden punkten mit einer anderen Stärke: Hier stehen höchste Detailtreue, feine Linien und absolut glatte Schnittkanten im Vordergrund. Besonders das Laserschneiden liefert schnelle und präzise Konturen in Plattenmaterialien, wodurch saubere Ergebnisse auch bei filigranen Formen entstehen. Darüber hinaus sind Gravuren dauerhaft haltbar – gerade Lasergravur in Holz oder Lasergravur auf Leder wirken nicht nur edel, sondern verleihen Objekten eine hochwertige, persönliche Note.

Nachteile

Der FDM 3D Druck bringt trotz seiner Vorteile auch Herausforderungen mit sich. So sind die Schichten oft sichtbar, wodurch eine Nachbearbeitung – etwa durch Schleifen oder Grundieren – notwendig werden kann, wenn eine glatte Oberfläche gewünscht ist. Zudem weist das Verfahren eine anisotrope Festigkeit auf: Die Stabilität hängt stark vom Schichtaufbau und der Haftung des verwendeten Filaments ab, was bei funktionalen Bauteilen berücksichtigt werden muss.

Auch die Lasergravur und das Laserschneiden haben ihre Grenzen. Da es sich überwiegend um 2D-Bearbeitungen handelt, lassen sich keine freistehenden 3D-Volumen erzeugen; hierfür benötigst du erneut den FDM 3D Druck und zugehöriges 3D Druck Filament. Außerdem ist bei bestimmten Materialien oder Materialstärken ein spezieller Laser beziehungsweise ein individuell angepasstes Setup erforderlich, um saubere und präzise Ergebnisse zu erzielen.

Anwendungen

3D-Druck und Lasergravur zeigen ihren Wert in verschiedenen Anwendungen.

Anwendungen des FDM 3D Drucks

Prototypen, Ersatzteile, Gehäuse, Halterungen, Lernmodelle: Der FDM 3D Druck ist ideal, wenn Form, Passung und Funktion zählen. Mit PLA Filament testest du schnell Designs; anschließend wechselst du bei Bedarf das Material zum 3D Drucken für mehr Zähigkeit oder Temperaturbeständigkeit. Geeetech bietet dafür robuste 3D Drucker und konsistentes 3D Drucker Filament.

3D-gedruckte Modelle
3D-gedruckte Modelle

Anwendungen der Lasergravur

Beschilderungen, Typenschilder, Geschenke, Kleinserien: Lasergravur liefert gestochen scharfe Ergebnisse. Lasergravur in Holz für Innenausstattung, Lasergravur auf Leder für Unikate, 3D Lasergravur für Reliefs.

Anwendungen der Lasergravur
Anwendungen der Lasergravur

Fazit

Beide Verfahren ergänzen sich hervorragend: FDM 3D Druck baut Volumen, Lasergravur veredelt Oberflächen und trennt Konturen über Laserschneiden. Für Funktionsbauteile und schnelle Iterationen nimmst du am besten den FDM Drucker plus passendes 3D Drucker Filament (oft PLA Filament zum Start). Für Markierungen, Logos und filigrane Konturen setzt du auf Lasergravur. Mit Geeetech erhältst du eine verlässliche Basis für beide Wege für die additive Fertigung – vom ersten Test bis zum sauberen Endteil.

]]>
The Ultimate Guide of 3D Pens https://blog.geeetech.com/3d-printer/3d-printing-pens/the-ultimate-guide-of-3d-pens/ Wed, 23 Jul 2025 08:32:43 +0000 https://blog.geeetech.com/?p=13234 If you are looking to play around with 3D printing in real-time, one of the easiest and most accessible ways is to try a 3D Pen. These small devices allow you to heat up 3D printer filament and then create your own and unique designs by simply drawing what you want. Learn all about it here!

3d printed light house
3D pen printed light house

What Is A 3D Pen?

Before we look at specific designs and possibilities, let us first briefly go over the principle of how a 3D printing pen actually works. The device is an electronic unit that is shaped similarly to a mechanical pen, typically a bit larger and heavier, though.

On the inside of the 3D pen is a heating element which melts the printer filament, such as PLA, PCL or ABS material to then extrude it through the tip and allow the user to “draw” their designs. The filament quickly cools down and solidifies, making it possible to quickly create several layers on top of each other.

TG-21 All-metal motor

Many people use lineart on paper or printed designs to help them follow a pattern, but you can also “freehand” draw with the 3D pen in order to let your imagination dictate what object you create with your designs. This allows for total freedom, and is thus great for children and adults alike.

What 3D Printing Materials Can Be Used by 3D Pens?

In general, the most common types of filament for 3D pens are PLA, PCL and ABS filaments, but it will all depend on the specific model and type of 3D pen you have. For instance, the popular Geeetech TG-21 supports 3 different types of filaments: PLA, PCL and ABS. And for the dimensions, it works with 1.75mm filament.

Geeetech 3D printer pen filament

For beginners who are unsure what type of material to go for, it is often recommended to start with PLA filament as it uses a relatively low temperature, is environmentally friendly, does not have any bad smell and is also easy to use in the 3D pen.

PCL filament has an even lower melting point (about 60°C), making it a decently safe and great choice for children. The material is also quite soft, which makes it possible to create curves and other unique design features.

ABS filament is another filament that can be used in 3D pens, typically used by more advanced users. This is due to the strong odor it releases, and the high printing temperatures. Therefore, you will need good ventilation when printing with this material, although it does provide the properties of ABS which makes it great for certain objects.

How to Do 3D Printing with a 3D Pen?

The basic principles of most 3D Pens are quite simple to learn and understand. The first step is generally turning on/plugging in the 3D pen depending on the model. Next up, you will need to insert the 3D printer pen filament of your choice, and then set a temperature for heating accordingly. After a short wait, you are ready to start “drawing”.

3D pen printed LABUBU

How to Use a 3D Pen?

Since the different 3D pen models have slightly different instructions, we will use the Geeetech TG-21 3D pen as our example for this guide. This model is easy to use, and supports different filaments for you to experiment with.

  1. In order to start, you should first turn on the power and connect the 3D pen to your power adapter.
  2. Next, you need to select which material you wish to draw with for the session. The LCD screen has different options so choose the one that matches.
  3. Once you have selected your filament, click on “Load Filament” in order to begin preheating the material.
  4. The LED light will be red while preheating, and once it turns green you can then insert your chosen filament through the loading hole, then click “Load Filament” once more in order to complete the process.
  5. Now you can select your specific print settings, such as temperature and speed in order to get the best results. This is up to you and can require a bit of experimentation to get perfect.
  6. Once you have been using the 3D pen for a while, you will likely run out of filament or wish to stop. In both cases you need to click the “Unload Filament” button for at least 3 seconds, this will begin an automatic procedure that releases the remaining filament.
Steps of using 3d pen
Steps of using Geeetech TG-21 3d pen

Here is a tutorial video:

How to Conceive and Design 3D Pen Templates?

You do not have to be a professional modeller or artist in order to use the 3D printing filaments with your 3D pen to great effect. All you need to do is draw. If you don’t have any inspiration at this moment, there are many free templates available online that are worth discovering. Below, we are sharing some tips and samples for design.

1. Achieve a 3D Object by Stacking Two-Dimensional Shapes

For example, draw a circle, stack the circle with many layers, and finally, a hollow cylinder is formed. You can use this to design a pen holder or other objects with depth.

3D pen printed circle
3D pen printed circle

3D pen printed pen holder
3D pen printed pen holder

2. Utilize the Existing Objects as a Tool

Let us imagine that you want to print an earphone protection shell. In order to begin this project, first extrude the filament directly on the surface of the Bluetooth earphone case, and then wrap your filament around the case. Once it has cooled down, you can demold and complete your protective shell case.

3D pen printed shell
3D pen Printed earphone protection shell

3. Breaking down the Photographed Sample Object into Multiple Flat Components for Printing, and Assembling Them

In the example below, we have a more complex shape. In order to create this with your 3D printing pen, it is a good idea to break down the wooden house in the first photo into multiple flat shapes and then draw them on paper. Once that is done, you can squeeze the wood filament along the lines and fill the shapes. Finally, assemble the shapes.

Photographed Sample Object
Photographed Sample Object
Flat shapes were drawn on paper
Flat shapes were drawn on paper

Conclusion

Using a 3D pen can be a great way to quickly print models that can be used for decoration, spare parts or prototypes for your inventions and ideas. It is relatively cheap and effective to do, and is a great addition alongside the traditional FDM 3D printers for anyone interested in the hobby. Using 3D pens for kids can also lead to fun and games, but we recommend supervising the younger ones while they are working. Have fun printing!

]]>