What Is Retraction in 3D Printing | Geeetech https://blog.geeetech.com Get Your Ideas Into Life Wed, 19 Nov 2025 09:57:05 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.3 https://blog.geeetech.com/wp-content/uploads/2025/06/cropped-blog-logo-32x32.png What Is Retraction in 3D Printing | Geeetech https://blog.geeetech.com 32 32 What Is Retraction in 3D Printing https://blog.geeetech.com/3d-printing-trouble-shooting-guide/what-is-retraction-in-3d-printing/ https://blog.geeetech.com/3d-printing-trouble-shooting-guide/what-is-retraction-in-3d-printing/#respond Wed, 19 Nov 2025 09:57:02 +0000 https://blog.geeetech.com/?p=13438 One of the more frustrating parts of 3D printing any design, is when you experience hairy strings or blobs of filament in the middle of an hour-long project. Oftentimes, this can not only look like a 3D printed spider web, but also mess up your entire print setting you back on both time and material cost. One solution is better retraction, which is what this article will cover. So keep reading if you want to get better prints and fewer headaches. Enjoy!

What Is Retraction?

When 3D printing items, the hot end is always under pressure with the filament being extruded from it. This is true even when the machine is not actually printing something, and simply traveling to a new point-the pressure applied can make the filament ooze.

Retraction aims to solve this problem by pulling back the filament for a small distance when the nozzle is moving, creating a vacuum which helps to stop any leaks of the melted filament. You can start dialing in the sweet spot where you eliminate strings and blobs by adjusting settings in your 3D printer.

How to Set Retraction?

You will need to use your 3D printing software in order to adjust your retraction, whether you want to enable/disable the function, or just tweak some of the parameters.

Explanation of Key Parameters

To help you navigate your specific 3D printing application, while also adjusting your 3D printing retraction settings accurately, we will explain the concept of the most common parameters. Just keep in mind, that depending on your specific program of choice, these options can be called different things and some applications might not have all of the options listed below.

Retraction Distance

The actual distance for retraction is a common parameter for most slicing applications. It simply defines how far the filament is drawn back from the extruder. You can experiment with it, but you can also look up online what works well for your model and try what other people have found as a good baseline.

Retraction Speed

Next up, we have the speed of the retraction, which is a parameter that determines just how quickly the filament is retracted. The faster this speed is set to be, the cleaner you will typically experience your prints but it will also increase the risk of snapping the filament. On the other hand, a speed setting that is too slow can ooze 3D printing material from time to time.

Minimum Travel Distance

As the name suggests, this parameter controls what the minimum acceptable distance a retraction is triggered. On short moves where the extruder will only be travelling a short distance, it can be unnecessary to retract the filament, so this prevents unnecessary retraction on very short travels. It is common to use 0.5–2.0 mm for this.

Z Hop

This parameter controls whether the 3D printer will attempt to lift the nozzle slightly when it travels. Enabling this function can prevent your nozzle from hitting your 3D printed objects when in motion, but can also increase the probability of stringing. We advise you to test out both options to see what works best for your printer.

Retraction Settings for Different Extruders

  1. Direct Drive Retraction Settings

    The Direct Drive extruder only requires a shorter distance, such as 0.5–2 mm, as it is mounted directly above the hot end. Because of this, the distance from the gear itself and down to the melt zone is short, meaning a short distance will be plenty to create the vacuum in the nozzle.
  2. Bowden Extruder Retraction Settings

    A Bowden extruder generally requires a longer retraction distance, such as 4–7 mm, due to its longer pipeline and greater elasticity. This is because the slack is the first “part” to be retracted and only then the actual pull will take place.

Retraction Settings for Different Materials

It is also important to consider what 3D printing material and 3D printer you are using. Different materials with their own unique properties require slightly different settings. So if you experience that your PLA filament causes oozing, you can use the table below as a solid base for perfectly tweaking your 3D printer and 3D printing filament for the best possible 3D printer retraction settings. We recommend that you only change one thing per print in order to validate the expected effect.

(PS: The following are just some comprehensive reference Settings, as different printers have different settings and conditions. )

MaterialRetraction Distance (Direct Drive) (mm)Retraction Distance (Bowden) (mm)Retraction Speed (mm/s)Minimum Travel Distance (mm)Z Hop (mm)
PLA0.8–2.04–635–450.5–1.00.2–0.4
PETG0.8–1.53–525–350.8–1.00.2–0.4
ABS/ASA1–24–535–450.5–1.00.2–0.4
Nyon (PA)1–24–625–350.8–1.20.3–0.6
TPU / TPE0.5–10–2 (often disabled)15–251.0–2.00.2–0.4

Typical Symptoms of Retraction Failure

Many beginners and intermediate hobbyists often have trouble identifying whether their problems are caused by retraction failure or some other aspect on the printing process. And for good reason, the topic can quickly become quite complex. So we have created a short guide to help you figure out whether your symptoms could be related to retraction failure.

Stringing / Oozing

Once you have seen this problem in your own prints, you will understand both of the words instantly. Stringing and oozing is what happens when you get long, thin lines of filament that does not follow the expected layer pattern. They can be caused by a number of different things, but relating to retraction there are typically three main reasons.

  1. Stringing can happen because the retraction distance is not great enough, which is the most common issue people have. As we mentioned earlier, if the filament is not pulled far enough back into the nozzle, the filament can leak out.
  2. Another issue is that your retraction speed is too slow. If the retraction is not quick enough, won’t relieve the pressure in the nozzle effectively to allow the molten filament to stretch and turn into long strings.
  3. While not strictly a retraction issue, you can also experience stringing if your print temperature is too high, as the filament becomes more “runny” and prone to stringing.

More solutions of string, please refer: 5 Easy Ways to Prevent 3D Print Stringing.

Blobbing / Zits on the Surface

Another common problem is what we call blobbing, which is categorized by small bumps or blobs on your printed objects. This problem tends to most commonly happen at the start and end of a perimeter, since it is related to the restart of the extrusion. The reasons include:

  1. Extruding too much after retraction is the most normal cause of this, as the printer tries to push out too much filament when beginning to print again after having travelled. Typically you will need to lower the retraction distance or the extra restart distance, depending on your slicing software.
  2. The actual speed of retraction can also be too high, as it can knock the filament into the melt zone by accident which increases the pressure and creates the blobbing effect.

Bonus tip: If you have not enabled “Coasting” or “Wiping” in your slicer, activating these features can often help remove the blobbing artefacts, as they adjust the extrusion behavior to help avoid blobs.

How to Run Retraction Tests to Find the Perfect Values

In order to find the best values, whether for your TPU retraction settings, or PLA retraction speed, you follow this step-by-step guide to dial, in order to learn how to reduce stringing 3D printing artefacts.

Retraction Test ( PLA Filament
  1. Dry filament: This is very important because too much moisture may give you a lot of stringing and poor extrusion.
  2. Print a temperature tower: You can try to print a temperature tower that gradually changes the printing temperature according to the height of an object to find an optimal value. This can help identify the best extrusion temperature for your specific filament.
  3. Use a retraction tower:  Next, you can try a specific retraction tower model to help you adjust the distance at a fixed speed, As the printer goes layer by layer, you will then need to observe the distances that produces the least amount of stringing.
  4. Fine-tune the speed: Now you know the retraction distance, you can lock that in and then work on the speed. Print another retraction tower to see what speed works best.
  5. Record the perfect values: Don’t forget to write down your best values for future prints. They can also help you when changing to another brand or even trying PLA retraction settings instead of ABS.

Conclusion

As we have seen, the ideal settings of retractions are very dependent on the 3D printer used, the type of extruder, filament material, and more specific parameters such as speed and distance. Although the tables above offer a very good starting point, the actual “sweet spot” for your particular machine is obtained through committed testing with retraction towers. By taking ownership of retraction, you can save yourself a great deal of time and filament, not to mention a countless number of headaches, and unlock your 3D printer’s full potential.

]]>
https://blog.geeetech.com/3d-printing-trouble-shooting-guide/what-is-retraction-in-3d-printing/feed/ 0
Vorbereitungen vor dem 3D-Druck – FDM https://blog.geeetech.com/deutsche-kolumne/vorbereitungen-vor-dem-3d-druck-fdm/ https://blog.geeetech.com/deutsche-kolumne/vorbereitungen-vor-dem-3d-druck-fdm/#respond Fri, 31 Oct 2025 16:01:31 +0000 https://blog.geeetech.com/?p=13413 Wer zum ersten Mal mit einem 3D-Drucker arbeitet, merkt schnell, dass Vorbereitung alles ist. Ohne sie läuft wenig rund. Ein 3D-Drucker ist kein Gerät, das Papier bedruckt – er erschafft Objekte aus geschmolzenem Kunststoff, Schicht für Schicht. Gerade beim ersten 3D-Druck für Anfänger hilft es, sich etwas Zeit zu nehmen, das Material kennenzulernen und die Software richtig einzurichten. Dieser Leitfaden richtet sich an alle, die mit einem 3D-Drucker für Anfänger loslegen wollen – Und es zeigt, wie der Start mit 3D-Druckern von Geeetech oder anderen Marken Schritt für Schritt gelingt.

3D-Druck-Modelle finden

Die meisten Leute fangen mit dem 3D-Druck an, weil sie ein bestimmtes Modell verwirklichen wollen. Egal ob man ein vorgefertigtes Modell findet oder selbst eines entwirft – beide Wege sind großartige Möglichkeiten, sich zum Handeln zu motivieren.

3D-Druck-Modelle finden

Am einfachsten ist der Einstieg mit fertigen 3D-Druck-Modellen. Im Netz gibt es unzählige STL-Dateien und 3D-Drucker-Vorlagen, etwa auf Thingiverse oder Printables. Such dir kleine Objekte aus – ein Würfel, ein Schlüsselanhänger oder etwas Dekoratives. So lernst du den Ablauf kennen, ohne gleich Stunden zu investieren. Achte darauf, dass die Datei fehlerfrei ist (der sich öffnen lässt), bevor du sie in dein Programm für 3D-Drucker lädst.

Modelle selbst entwerfen

Wer lieber eigene Ideen umsetzt, kann mit einer 3D-Software arbeiten. Tinkercad ist zum Beispiel ideal für Einsteiger – leicht zu bedienen und logisch aufgebaut. Erfahrenere Nutzer greifen irgendwann zu komplexeren 3D-Druck-Programmen, die mehr Kontrolle bieten. Speichere fertige Modelle unbedingt als STL-Dateien ab. Das ist das Standardformat, das jede Slicer-Software versteht. So entsteht Stück für Stück dein digitales Fundament für den ersten 3D-Druck-Test.

Modelldateien prüfen und reparieren

Beim Herunterladen oder Entwerfen schleichen sich leicht kleine Fehler ein: offene Flächen, Risse, unvollständige Kanten. Solche Dinge fallen oft erst im Slicer auf. Zum Glück bieten viele 3D-Drucker-Programme oder kostenlose 3D-Drucker-Softwares automatische Reparaturfunktionen. Ein Klick genügt, und die Datei ist korrigiert. Gerade 3D-Drucker-Anfänger sparen sich so viel Frust – und starten mit sauberen Modellen in den Druck.

Slicing – vom Modell zum G-Code

Geeetech “Easy Print” Software

Jetzt wird aus der Idee Realität. Beim Slicen übersetzt die Software dein Modell in G-Code – das sind die Befehle, die der Drucker versteht. Hier bestimmst du folgende kleine Details:

  • Layerhöhe – sie entscheidet, wie fein dein Druck wirkt.
  • Infill – also die Füllung im Inneren, wichtig für Stabilität.
  • Wandstärke – je dicker, desto robuster das Teil.
  • Stützstrukturen – damit Überhänge nicht absacken.
  • Temperatur und Geschwindigkeit – abhängig vom Filament.

Am Anfang reicht es, mit den Standardwerten der Slicer-Software zu drucken. Diese sind meist gut abgestimmt und liefern saubere Ergebnisse. Mit der Zeit wirst du merken, wie stark kleine Änderungen das Ergebnis beeinflussen – und kannst gezielt an Qualität und Tempo feilen.

Den 3D-Drucker prüfen

Bevor du auf „Start“ klickst, lohnt sich ein kurzer Check deines 3D-Druckers. Ein paar Minuten Vorbereitung, in denen du deinen 3D-Drucker einstellen kannst, sparen oft Stunden an Nacharbeit.

Düse und Extruder

Achte darauf, dass die Düse frei ist und das Filament sauber gefördert wird. Schon kleine Rückstände können den Materialfluss stören.

Druckbett nivellieren

Eine gerade Druckfläche ist entscheidend. Ist das Bett zu hoch oder zu niedrig, haftet die erste Schicht nicht richtig. Viele Geeetech-Drucker erledigen das automatisch – ein Vorteil für Einsteiger, weil man so weniger einstellen muss.

Druckbett reinigen

Staub, Fingerabdrücke oder Fett – alles kann die Haftung stören. Wisch die Fläche kurz mit Isopropylalkohol ab, und du hast eine saubere Basis für den Druck.

Mechanik prüfen

Beweg alle Achsen einmal manuell, prüfe Riemen und Führungen. Wenn alles leicht läuft, passt es.

Filament wählen

Für den Anfang ist PLA-Filament perfekt. Es lässt sich einfach verarbeiten, riecht kaum und funktioniert schon bei niedriger Temperatur. Ein gutes 3D-Drucker-Filament von Geeetech sorgt für gleichmäßige Schichten und stabile Ergebnisse. So kannst du dich auf das Wesentliche konzentrieren: das Lernen und Ausprobieren.

Testdruck durchführen

Bevor du dich an große Projekte wagst, probiere einen 3D-Druck-Test. Beliebt sind kleine 3D-Druck-Modelle wie der „3DBenchy“ oder ein Kalibrierwürfel. So siehst du schnell, ob die Einstellungen stimmen. Bleib beim ersten Druck in der Nähe – dann kannst du eingreifen, falls sich etwas löst oder das Filament hakt. Oft reicht schon eine kleine Anpassung bei Temperatur oder Geschwindigkeit, um das Ergebnis sichtbar zu verbessern.

Fazit

Ein guter erster 3D-Druck hängt selten vom Zufall ab. Wichtiger sind Vorbereitung, Geduld und ein Gefühl für das Material. Mit sauberen STL-Dateien, einer passenden 3D-Druck-Software und einem gut eingestellten Drucker bist du auf dem richtigen Weg. Dank der präzisen FDM-Drucker und leicht bedienbaren 3D-Druck-Programme von Geeetech fällt der Einstieg deutlich leichter. Und irgendwann merkst du: aus dem ersten Testdruck ist mehr geworden – Routine, Spaß und vielleicht der Beginn eines neuen Hobbys.

]]>
https://blog.geeetech.com/deutsche-kolumne/vorbereitungen-vor-dem-3d-druck-fdm/feed/ 0
Skirt, Brim und Raft im 3D Druck: Grundlagen undAnwendung https://blog.geeetech.com/deutsche-kolumne/skirt-brim-und-raft-im-3d-druck-grundlagen-undanwendung/ https://blog.geeetech.com/deutsche-kolumne/skirt-brim-und-raft-im-3d-druck-grundlagen-undanwendung/#respond Mon, 27 Oct 2025 11:21:44 +0000 https://blog.geeetech.com/?p=13400 Wer im 3D Druck saubere Ergebnisse erzielen möchte, weiß: Die erste Schicht ist entscheidend. Damit sich Bauteile nicht vom Druckbett lösen und Warping im 3D Druck vermieden wird, kommen drei Methoden zum Einsatz: Skirt, Brim und Raft. Dieser Leitfaden erklärt verständlich die Unterschiede zwischen den drei Verfahren und zeigt, wie du die Druckbetthaftung verbessern und saubere erste Schichten erzielen kannst.

Skirt

Bevor die erste Schicht Ihres Modells gedruckt wird, kommt häufig der Skirt zum Einsatz.

Was ist ein Skirt?

Beim Skirt 3D Druck zieht der Drucker eine oder mehrere Linien um das Modell, ohne es zu berühren. Diese Umrandung dient zur Vorbereitung: Das PLA Filament wird auf Temperatur gebracht, eventuelle Reste in der Düse werden entfernt, und der Materialfluss lässt sich prüfen. Der Skirt hilft, Extrusion, Bettnivellierung und Haftung zu kontrollieren, bevor der eigentliche Druck startet.

Vorteile des Skirts

Ein Skirt 3D Druck bietet eine einfache Möglichkeit, den Druckvorgang zu testen, ohne Material am Objekt zu verschwenden. Die gleichmäßige Linie zeigt sofort, ob das Filament sauber fließt und gut haftet. Gerade bei PLA Filament ist der Skirt ideal, um die Düse zu reinigen und den Fluss zu stabilisieren. Bei empfindlichen Materialien wie ABS kann der Skirt höher gedruckt werden, um eine kleine Schutzwand gegen Zugluft zu bilden – das reduziert Warping im 3D Druck.

Nachteile des Skirts

Ein Skirt 3D Druck trägt nicht direkt zur Haftung bei, da er das Modell nicht mit der Bauplatte verbindet. Bei größeren oder empfindlichen Bauteilen genügt er daher oft nicht, um ein Ablösen vom Druckbett zu verhindern. Zudem wird etwas PLA Filament verbraucht, das nach dem Start keine weitere Funktion erfüllt.

Brim

Der Brim ist eine erweiterte Form des Skirts mit einer entscheidenden Funktion.

Was ist ein Brim?

Der Brim 3D Druck erweitert den Skirt um eine entscheidende Funktion: Er wird direkt mit der ersten Schicht des Modells verbunden und vergrößert so die Auflagefläche. Das Ergebnis des 3D Druck mit Brim ist eine flache, ringförmige Krempe rund um das Objekt, die die Druckbetthaftung verbessert und Warping beim 3D Druck deutlich reduziert.

Brim

Vorteile des Brims

Ein Brim 3D Druck eignet sich besonders für Materialien wie PLA und PETG, die beim Abkühlen zum Verziehen neigen. Durch die breitere Kontaktfläche haften Kanten und Ecken besser auf dem Druckbett. Gerade bei schmalen oder hohen Modellen – etwa Zahnrädern, Halterungen oder Türmen – sorgt der 3D Druck mit Brim für zusätzliche Stabilität. Er ist damit eine einfache und effiziente Lösung gegen PLA Warping, PETG Warping und Ablösungen während des Drucks.

Nachteile des Brims

Nach dem Druck muss der Brim entfernt werden. Dabei kann am Rand eine feine Linie entstehen, die leicht nachbearbeitet werden sollte. Bei sehr komplexen Geometrien ist das Entfernen etwas aufwändiger. Der Boden des Modells bleibt jedoch glatt, da der Brim nicht unter dem Objekt, sondern nur seitlich gedruckt wird.

Der Brim bildet eine Linie am Rand.
Der Brim bildet eine Linie am Rand.

Raft

Wenn sich auch ein Brim nicht als ausreichend erweist, um ein Modell sicher auf der Bauplatte zu fixieren, ist der Raft die ultimative Lösung.

Was ist ein Raft?

Ein Raft 3D Druck bezeichnet eine horizontale Gitterstruktur, die unter das Modell gedruckt wird. Das Objekt steht also auf einem sogenannten Floß, das eine stabile Basis bildet. Diese Methode wird eingesetzt, wenn Materialien schwer auf der Druckplatte haften oder zum ABS Warping neigen. Das Raft gleicht Unebenheiten aus und verhindert, dass sich das Modell beim Drucken vom Bett löst.

Raft 3d druck

Vorteile des Rafts

Ein Raft 3D Druck sorgt für maximale Haftung und kann die Druckbetthaftung verbessern. Er reduziert Schrumpfung, gleicht minimale Unebenheiten aus und verhindert zuverlässig, dass sich das Modell im 3D Druck vom Bett löst. Geeignet ist diese Methode besonders für Nylon oder ABS Filament, also Materialien, die hohe Temperaturen benötigen und stärker zum Verziehen neigen. Mit einem Raft 3D Druck schaffst du eine sichere Grundlage selbst bei großen oder technisch anspruchsvollen Teilen.

Nachteile des Rafts

Das Raft verbraucht am meisten Material und verlängert die Druckzeit. Nach dem Druck muss es entfernt werden, was bei feinen Strukturen etwas Geduld erfordert. Die Unterseite des Modells kann nach dem Entfernen leicht rau sein und sollte geglättet werden. Trotzdem bleibt das Raft die zuverlässigste Methode, um bei problematischen Materialien Warping im 3D Druck zu vermeiden.

Von links nach rechts: Die Bodenqualität von Drucken mit Skirt, Brim und Raft. Das mit Raft gedruckte Modell weist dabei die offensichtlich raueste Oberfläche auf.
Von links nach rechts: Die Bodenqualität von Drucken mit Skirt, Brim und Raft. Das mit Raft gedruckte Modell weist dabei die offensichtlich raueste Oberfläche auf.

Empfohlene Einstellungen

Mit Geeetech Druckern lassen sich alle drei Methoden präzise konfigurieren. Folgende Richtwerte bieten einen guten Ausgangspunkt:

  • Skirt 3D Druck: 2–3 Loops, Abstand zum Modell 2–6 mm
  • Brim 3D Druck: Breite 5–8 mm
  • Raft 3D Druck: Dicke 0,8–1,2 mm

Diese Werte bieten ein ausgewogenes Verhältnis zwischen Haftung, Materialverbrauch und Druckqualität. Zusätzlich sollten Druckbett-Temperatur und Nivellierung immer auf das verwendete Filament abgestimmt werden, um Warping im 3D Druck dauerhaft zu vermeiden.

Fazit

Skirt-, Brim- und Raft-Verfahren sind einfache, aber wirkungsvolle Methoden, um die Druckbetthaftung zu verbessern und Verzug zu vermeiden. Das Skirt-Verfahren dient der Vorbereitung und sorgt für einen sauberen Materialfluss, bevor der eigentliche Druck beginnt. Das Brim-Verfahren erhöht die Haftung bei Materialien wie PLA oder PETG und stabilisiert empfindliche Kanten. Das Raft-Verfahren bildet eine sichere Basis für ABS oder Nylon und minimiert Schrumpfung sowie Warping.

Mit Geeetech 3D-Druckern und den passenden Filamenten gelingen erste Schichten präzise und zuverlässig – die Grundlage für stabile, formgenaue und langlebige Druckergebnisse in der additiven Fertigung.

]]>
https://blog.geeetech.com/deutsche-kolumne/skirt-brim-und-raft-im-3d-druck-grundlagen-undanwendung/feed/ 0
Ultimate Guide to 3D Printing Supports https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/ultimate-guide-to-3d-printing-supports/ https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/ultimate-guide-to-3d-printing-supports/#respond Mon, 27 Oct 2025 03:23:13 +0000 https://blog.geeetech.com/?p=13387 Understanding when to use supports in 3D printing, what they do, and how they actually work can be a challenge for many beginning hobbyists. There are a number of different technical terms to learn, and then, of course, the impact on the overall result itself to consider. So this article aims to help you understand what you need to know, in order to use support structures correctly.

What Are 3D Printing Supports?

The basic idea behind 3D printing support types is, as the name suggests, to help support the 3D model. This can be an important step while the model is being printed, as some designs might not be at their maximum strength before they are finished, or they can have overhanging parts, bridges, or complex geometries that need to be kept in place during printing.

In general, 3D print supports are added to the main model itself via the 3D printing slicer, or sometimes baked into the actual 3D model itself, in such a way that it becomes possible to easily remove the supports once the print is complete. The supports can take many different shapes, but all are designed to keep the model from collapsing or creating unwanted results during printing.

Why and When Do We Need 3D Printing Supports?

Why and when supports are necessary will depend on a few different factors. Typically, any sort of overhangs, bridges, islands or deep holes in the 3D model can indicate a need for supports. Since the printer builds one layer at a time, certain geometric shapes are simply not solid or strong enough before more layers have been added, therefore needing the help of extra 3D printed support structures.

Overhangs typically need supports underneath, so there will be no drooping or falling parts during printing. Very short bridges generally can work without supports, but longer ones will need support to avoid them sagging or connecting in weird ways. Islands are shapes that are not connected at the bottom of the print, and often completely isolated from other parts, so they also need a structure to help keep them in place during printing. And finally, deep holes in models can also need support due to similar reasons as overhangs.

The Types of 3D Printing Supports

Now that we’ve discussed the types of problems with some 3D models, it is time to take a closer look at the actual support structures commonly used. Below we’ve included a few image examples to help visualize this.

Tree Supports

Tree support in 3D printing slicer
Tree support in 3D printing slicer

We start out with tree supports for 3D printing, as they are one of the most common types for many different models and shapes. They tend to branch out from the base of the printing bed, in order to then slightly connect with any overhangs or other problem areas, to support them in an effective way that also makes them easy to remove. Tree support 3D printing can be quite material efficient compared to some other supports, so that you don’t waste much filament this way.

Grid / Line Supports

Another form of 3D printing support structure is typically referred to as grid supports, although some people call them line supports, as they look like a grid when viewed in 2D. They are great for providing extra strength and stability to a number of different challenging shapes, but are especially used for large and flat shapes, as well as overhanging surfaces that could droop or warp without the support. However, they can be more difficult to remove and they can also use up more filament.

Soluble Supports (PVA, HIPS)

The last method we will discuss today is soluble supports, and as the name suggests, they make it possible to remove the unwanted material in a much cleaner way by dissolving their connection points. PVA is one such material used that can be dissolved with simple water, making it a great 3D filament to use for supports. HIPS is another commonly used material for this method, dissolved with limonene. The downside is that you will need a dual-extrusion printer to use this method, as you need the normal filament in one extruder and the soluble filament in the other.

How to Set 3D Printing Supports

Now that you know a little more about what supports are, and when they are used, it is time to look at how you can implement them. Below, we have described some 3D print support settings you can try out for reference, but remember that they can vary depending on the slicing software and materials, so use them flexibly as needed. We used Bambu Studio and Geeetech PLA filament as our reference point.

Support Placement

We recommend that you choose the option to print supports “On build plate only”, as it will help prevent the support from falling off or becoming unstable. Adjustments may be needed depending on the model however, so keep an eye out at the start of printing.

Support Density

Choosing the density of support structures is an act of balance. The denser the support is, the stronger and more stable it will be. However, it will also be more difficult to remove from your 3D printed designs, and also use up more filament. We recommend starting with around 30% as that is the default. 20% can also work in many cases, so this is the area to adjust from.

Support Z Distance

Top Z distance in 3D printing slicer
Top Z distance in 3D printing slicer

Choosing the Top Z distance is another factor that plays into your overall support structure, as a larger Z distance makes supports easier to remove but leaves a rougher surface. Start with the default distance and fine-tune for your model.

Support Top Distance

Top interface spacing in 3D printing slicer
Top interface spacing in 3D printing slicer

Smaller top interface spacing improves surface quality but makes removal harder. We recommend that you use 0 mm for large interfaces, and then try 0.5 mm for smaller interfaces. Again, this might need some adjustment to get perfect.

Support Overhang Angle

Choosing the angle for support overhangs is another tricky thing. On the one hand, smaller angles generate more supports, while larger angles reduce supports. However, the best setting finds a balance in order to make removal easy.

The default setting is 40° and we recommend to adjust based on your results, so if if the model bottom sags or strings, you should decrease the angle. And if you find that too many supports form, it can be effective to increase the angle.

Support/Object XY Distance

As for the XY distance for supports and objects, the default setting is 0.5 mm, which generally speaking is a good balance.

Soluble Support Settings

Soluble supports can be set very small or even completely tuned down to 0 mm interface distance, but generally, you will want a little distance. If you find that supports fall off easily, then increase density or reduce interface distance.

we also get the option to adjust wall thickness. This is especially important for soluble support structures, as a single layer can have issues with solvent seeping through when you remove the support. In this case, we recommend at least 2-3 layers for a more robust approach.

How to Remove Supports from 3D Prints

The last section for today will briefly cover how you can remove your support structures once they have been printed together with your desired model.

Normal Supports

Before you begin working on your printed design, you should always allow the model to cool down to an appropriate working temperature to avoid any accidents. However, supports are easier to remove when slightly warm, so timing this step right can be helpful as completely cooled off objects are more rigid.

We recommend that you start by removing the supports from the outside in, and also work your way from large to small structures. One technique that many people find useful, is to twist gently or shake up and down. Many times, the supports can simply snap off, but you might need a small tool to help you cut out tough parts.

Remove the support
Remove the support

Soluble Supports

For soluble support structures, the process is different. It will depend on your chosen filament in particular, so remember to read the instructions for your specific material. Below, we have outlined a rough step-by-step guide for both PVA and HIPS, based on our own experience:

PVA:

  1. Soak in warm water (30–40°C) for several hours.
  2. Stir regularly or use a soft brush to speed up dissolution.
  3. Rinse thoroughly with clean water and let dry.

HIPS:

  1. Soak in limonene solution and seal the container to prevent evaporation or odor.
  2. Dissolution usually completes in 1–6 hours.
  3. Remove with pliers, then rinse in fresh limonene to clean residuals.
  4. Allow solvent to fully evaporate in a well-ventilated area before handling.

When removing soluble supports, especially HIPS, you should work in a decently ventilated area and wear solvent-resistant gloves and goggles. Avoid skin contact with limonene for optimal safety and wash it off fast if any contact happens.

Conclusion

Hopefully we have helped you understand the key points for the basic principles behind 3D printing supports, different settings and how to remove your structures once completed. For new hobbyists it can take some time getting used to, and dialing in on the perfect settings for your specific printer, and each model can also have slightly different optimal settings.

We’ve also covered how to make supports easier to remove, and touched on the difference between normal and soluble 3D printer support types. So remember, practice makes perfect, and always keep an eye on your printer from time to time, to avoid wasted hours if the support structure or model is not working as intended. Happy printing!

]]>
https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/ultimate-guide-to-3d-printing-supports/feed/ 0
Slicing Introduction: What Is Slicing in 3D Printing? https://blog.geeetech.com/3d-printer/3d-printing-software/slicing-introduction-what-is-slicing-in-3d-printing/ Tue, 30 Sep 2025 08:13:00 +0000 https://blog.geeetech.com/?p=13374 The concept of slicing 3D models can be a bit confusing for newcomers to the wonderful hobby of 3D printing. But it is actually quite simple, so don’t worry. In this article, we will explain all you need to know, so that you can slice your 3D models correctly every time. Enjoy!

What Is Slicing?

3D slicing
3D slicing

Whenever you have a 3D design that you want to print, you will need to prepare the digital format for your printer. Instead of just having the complete “block” of your model, it is necessary to slice the model into smaller segments, the individual horizontal layers that the printer will actually produce.

This formatting is called slicing, and is therefore an important part of any FDM 3D printing process, as well as many other types of 3D printers. Think of each layer as representing a cross-section of the model that the printer builds sequentially, and that the slicing is responsible for actually keeping track of the layers and their position.

In simple terms, the slicing is “translate” the 3D model into a series of instruction files that the printer can understand and execute layer by layer.

Why Is Slicing Important in 3D Printing?

Since you will need to convert your 3D design into simple instructions that your 3D printer can understand, slicing can be considered one of the most important parts of the entire process. You may have a beautiful 3D model you created yourself, or picked off the internet, but if it has no slicing data you can not print it.

The actual data that is produced during this procedure influences numerous important factors, including printing quality, accuracy, as well as the overall result of your finished 3D printed product. It does this by controlling the trajectory the printer moves, the quantity of the substance that is extruded, as well as the adhesion that each layer is joined together. A good 3D slicer and appropriate 3D printing programs assure the best settings for speed, quality, as well as the utilization of the building material.

The Processes of Slicing

While the underlying technology of slicing might seem complex, it is actually relatively simple to slice any model with the right software. Oftentimes you can even slice your 3D prints with just a few clicks, so it does not need to be overly complicated, although you will often get better results by changing some parameters based on the specific print, the material you want to use and your actual printer.

Step 1: Import Model

Before you can slice anything, you will first of all need your 3D model as a digital file. There are different formats for this, but common ones include .STL or .OBJ files. These are the most used filetypes that you will typically get when you download a file on any of the larger sites.

Next, you will also need your slicing software. There are many different options to choose from here, so we will cover this part in more detail below. Once you have loaded your 3D model file into the slicer, you can then configure various settings depending on the desired results.

Step 2: Configure Settings

This is the most critical step. You’ll adjust a host of parameters based on your printer, filament, and desired print quality. If you download from another creator, they often include the important parameters you need to change, alongside the values they recommend.

  1. Layer height: The thickness of each printed layer. Smaller layers give smoother surfaces but take longer to print.
  2. Infill density and pattern: The internal structure of the part, which governs its strength and weight.
  3. Wall thickness: The thickness of the outer shell.
  4. Support structures: Automatically generated, removable scaffolds that prevent overhangs from collapsing during printing.
  5. Print temperature and speed.

The last of the most common parameters is the print temperature and speed. This is generally decided by the material used, so if you use TPU filament, ABS or some others 3D printer filament, you might change these settings in particular.

Step 3: Slice the Model

One you have set all your parameters as you want, you can then click “Slice model” in order to begin the automated process. Depending on the size of your model, how complex the shape is, and the various parameter values, this can take a few minutes on the shorter end or up to 20 minutes on slower devices with a large and complex model.

This is because it performs the “virtual slicing” on the model, along the Z-axis and generates precise printing paths for each layer that your 3D printer will then follow once it becomes time to actually print the model.

virtual slicing
virtual slicing

Step 4: Generate G-code

Most software applications will then save all these slices into a new file, known as G-code, which then not only stores all your virtual slice paths, but also saves information that the printer will use to know what temperature the hotbed should be, how much extrusion is needed and so on.

Step 5: Send to Printer

The last step before printing, is getting your G-code uploaded to your 3D printer. On your model and preference, you will usually be able to select doing this through a standard SD card, a direct USB, Bluetooth or through your WiFi or LAN networking. Once your 3D printer has received the G-code, you can then begin printing.

Introduction to Slicers

As we mentioned above, there are different types of 3D printing software that you can use to slice your model. In general, they all convert 3D models into G-code instructions for the printer, so it becomes a matter of preference which type of software you end up choosing.

Simplify3D, Ultimaker Cura, PrusaSlicer

Among the most popular used slicers, you would see names like Simplify3D, Ultimaker Cura, and PrusaSlicer. They are either branded applications that come packaged with your specific 3D printer, or massively used third-party applications created by enthusiasts. Many of these programs have free and paid options, and they typically support a wide range of printers and materials.

Geeetech

3d printing software free: Geeetech
3d printing software: Geeetech

Looking back, the last 3D printing software we developed was Easy Print, and it’s still being used today.
Now, one new and noteworthy 3D printing software is the one we have launched and named Geeetech, which comes with a set of interesting features for everyone wanting to print easily and quickly. Currently, we only open the connection to Geeetech M1S. The software comes with some models that can be printed directly. More functions and models will be opened up in the future, such as easily slicing.

It will continually get new functions and slicing features, and we look forward to it becoming one of the best slicers for 3D printing for Geeetech users and anyone else interested in great results.

3d printing software: Geeetech
3d printing software: Geeetech

Conclusion

To sum it up, slicing is an extremely important part of any 3D printing process. It is important that you therefore understand why you need to slice your models, but also learn how to tweak the parameter values to get the best results. This can be tricky with some applications, so we recommend you try different types of 3D printing software and 3D slicer tools, in order to see what gives you accurate and high-quality prints.

In particular, we hope you will explore the new Geeetech 3D printing software to experience reliable performance, an intuitive slicer app, and optimized printing results. Have fun printing!

]]>
Why TPU Filament Absorbs Moisture Easily and How to Dry It https://blog.geeetech.com/materials/3d-printing-filament/why-tpu-filament-absorbs-moisture-easily-and-how-to-dry-it/ Sun, 28 Sep 2025 09:23:26 +0000 https://blog.geeetech.com/?p=13358 If you have ever used TPU 3D printer filament before, you might have had issues with a stringing mess created by the printer, or maybe bad layer adhesion. This is often caused by moisture in the TPU filament, which typically happens when it is not stored in an airtight container or package. So let us try to understand this phenomenon better, and how to fix the issue. Enjoy!

What Is TPU?

In short, TPU filament (Thermoplastic Polyurethane)  is a popular filament among hobbyists and pros alike to work with in their 3D printers, and is generally considered a user-friendly and cost-effective soft material. It is valued for its unique combination of rubber-like flexibility and plastic-like processability, which is ideal for use in a wide variety of situations and applications.

However, it also happens to be hygroscopic, meaning that it will pick up moisture from the air. You should be aware of this, because it not only impacts the way you should be dealing with the material, but also how much you need to take into consideration when storing your used TPU 3D printing filament.

If you want to learn more about TPU properties, answering questions such as “Is TPU Waterproof?” we have already written another article covering the filament in more detail here: TPU Filament Guide.

TPU’s Hygroscopic Properties

As mentioned above, TPU has hygroscopic properties, which make the material susceptible to moisture absorption. This is due to the overall chemical structure of the filament, and not something that can be avoided with TPU.

On a high level, you can think of TPU as a blend of hard and soft segments, which together provide both strength and flexibility to your 3D printed objects. However, this also creates “holes”, which in scientific terms are called polar sites that allow hydrogen to bond with the material.

Below, we have highlighted the TPU’s hygroscopic properties, and what the molecular structure looks like for the more scientific readers.

Strong Polar Chemical Bonds

  • Urethane Linkage (-NH-COO-): It is the basic chemical bond that constitutes the polymer backbone, which has a high polarity.
  • Carbonyl (C=O) and Amide (-NH-) Groups: These groups are very polar and have a natural affinity to water molecules.

Hydrogen Bonding Mechanism

  • Water molecules (H₂O) are also strongly polar.
  • Oxygen (O) and Nitrogen (N) atoms on the TPU chain form strong intermolecular hydrogen bonds with hydrogen (H) atoms in water molecules, effectively “trapping” them.

How to Identify Moist TPU Filament

Alright, now that you know TPU can absorb moisture, how do you figure out whether it is good for use, or whether you need to dry it before using in your 3D printer? Luckily, there are a few things you can do to identify wet filament symptoms. Below we have listed 3 different signs so you can identify moist TPU filament.

  1. Hearing cracking or popping noises from the hot-end while printing.
  2. Formation of small bubbles inside the filament or defects on the surface of a printed part or model.
  3. Wet or moist filament tends to feel tacky and/or brittle, losing some of its flexibility.
Wet filament vs. dry filament
Finished print showing identifier number 2 from the list above: small bubbles and defects. (Source: H3dSprint@printables)
Resilience of the moist filament  and dry filament
The resilience of the moist grey filament after bending is significantly lower than that of the dry blue TPU filament.

The most important point is number 3, that can be tested before you start printing with the filament. So try handling the TPU filament in your hand, and see if it feels sticky, or whether it might It feels stiffer and bounces back faster when bent than you remember. As you know, TPU is a rather flexible filament, so you should be able to bend it quite a bit before it snaps.

How to Prevent and Dry Moist TPU Filament

The best way to avoid any type of moist TPU 3D filament in your prints, is to store all your materials properly. Of course, if moisture has already occurred, we can also remedy it.
Generally speaking, there are two different methods that yield the most consistent results, while maintaining the flexible 3d filament properties.

Proper Storage

  • Use airtight, moisture-barrier bags, such as vacuum-sealable bags with desiccant.
  • Use dry storage containers.

There are also other options you can use, such as normal plastic bags with zip ties or tape ensuring a solid seal, although these are not as reusable and practical for frequent printing, and also more prone to failure.

Dry Filament

If you believe your TPU filaments might have trapped some moisture inside it, no amount of correct storage can fix the issue. You will instead need to manually extract the water by drying your TPU filament at home.

  • Ideally you would use a professional filament dryer, as it is the most effective method. In this case the recommended TPU drying temperature settings are 50–60°C for 4–6 hours.
  • Alternatively, you can sometimes get away with using your conventional oven, although this is more of a DIY hack and difficult to truly control the precise temperature. So be careful if you try this at home.

If you are printing quite often at home, it might be worth investing in a special filament drying machine, as they are becoming cheaper now that more people are using them, and can save you quite a bit of money and time in the long run.


On the other hand, if you would rather save your money, sometimes you can find 3D printing workshops and makerspaces in larger cities, that will have one you can use for a small fee, or even for free on occasion. This can be a good way to achieve dry filaments and test out the dry machines, and maybe even connect with other hobby enthusiasts!

More tips for storing and drying filament: How to Dry And Store 3D Printer Filament.

Conclusion

In the end, TPU is both a strong and flexible 3D printer filament, but the downside is that its hygroscopic properties make it prone to moisture absorption, which can quickly ruin a print. But this isn’t a lost cause.

If you know how to identify the warning signs of a wet filament and recognize that adequate filament storage is your first line of defense, the problem can become much easier to deal with. If moisture enters your filament, bear in mind that a filament dryer is worth the investment to guarantee your 3D prints will be reliable and of quality. A little preventative maintenance will keep your all-purpose TPU filament ready for your next great project.

]]>
Alles, was Sie über Holz Filament wissen müssen https://blog.geeetech.com/deutsche-kolumne/alles-was-sie-uber-holz-filament-wissen-mussen/ https://blog.geeetech.com/deutsche-kolumne/alles-was-sie-uber-holz-filament-wissen-mussen/#comments Thu, 18 Sep 2025 08:48:14 +0000 https://blog.geeetech.com/?p=13341 Holzfilament verbindet die natürliche Anmutung von Holz mit der leichten Verarbeitbarkeit von PLA. Auf Basis von PLA Filament entsteht durch die Zumischung von Holzpartikeln ein 3D Drucker Filament, das eine warme Farbe, eine dezente Maserung und eine matte Oberfläche bietet. Wer seinen 3D-Drucker mit den richtigen PLA Holz Filament Einstellungen ausstattet, erzielt damit beeindruckende 3D-Druck-Ergebnisse – ob für Dekoration, Prototypen oder Gebrauchsgegenstände.

Was ist Holz (Wood) Filament?

Geeetech Holz filament
Geeetech Holz filament (Walnuss)

Unter Holz Filament versteht man ein Verbundmaterial aus PLA Filament und feinen Holzfasern oder Holzmehl, auch bekannt als Woodfill Filament. Teilweise wurden früher Sägemehl-Varianten verwendet, doch heute bestehen die meisten Holz 3D Drucker Filamente aus Holzpartikeln, die deutlich feiner sind. Es gibt Hersteller, die Filamente mit 15%-50 % Holzanteil im Filament anbieten – das verleiht den Objekten sowohl Textur als auch Geruch natürlich wie Holz. Durch Schleifen, Beizen oder Ölen lässt sich die Oberfläche wie bei echtem Holz behandeln, und auch der Geruch während des Druckens erinnert an Holz oder leicht verbranntes Holz – hier ist gute Belüftung empfohlen.

Vorteile und Nachteile von PLA Holz Filament

Bevor Sie sich für Wood Filament entscheiden, sollten Sie über dessen Vor- und Nachteile informiert sein.

Was sind die Vorteile von Holz PLA?

Holz PLA bietet neben seiner Umweltfreundlichkeit gleich mehrere Pluspunkte: Modelle wirken durch die Holzoptik des besonderen 3D Drucker Filaments warm und natürlich. Die Nachbearbeitung ist einfach, da sich die Oberfläche wie echtes Holz behandeln lässt – Schleifen, Ölen oder Wachsen führen zu hochwertigen Ergebnissen. Durch die Verwendung feiner Holzpartikel und großer Holzanteile im Holz Filament entstehen starke haptische Eigenschaften; auch Geruch kann beim Drucken eine sinnliche Erfahrung sein. Dank der niedrigen Drucktemperaturen des PLA-Basisanteils ist das Material auch für weniger erfahrene Anwender geeignet. Hier klicken für mehr PLA Filament Eigenschaften.

Was sind die Nachteile von Holz PLA?

Die in das PLA 3D Filament eingebrachten Holzpartikel können bei falschen Einstellungen zu Düsenverstopfungen führen. Außerdem ist eine begrenzte Druckgeschwindigkeit notwendig, um saubere Oberflächen zu erhalten. Holz PLA ist – vor allem bei hohem Holzanteil – weniger zäh und mechanisch belastbar als reines PLA. Schließlich bleibt die Wärmebeständigkeit begrenzt – ein typisches Merkmal von PLA-Verbindungen.

Tipps zum Drucken mit Holz Filament

Um mit Holz PLA Filament saubere 3D-Druck-Ergebnisse zu erzielen, sollte das Material stets trocken gelagert werden. Auch eine glatte Filamentführung und ein sauberer Feeder sind wichtig. Danach folgen die eigentlichen Druckeinstellungen: zunächst die Basiswerte für PLA Filament (wie Extrusion, Flow und Lüfterleistung), anschließend die Feinabstimmung der Holzfilament-Einstellungen. Wichtig: Experimentieren mit Slicer-Einstellungen lohnt sich, z. B. mit Ebeneneinstellungen oder speziellen Slicer-Funktionen (z. B. Kämmen / Combing), um Fädenziehen und unnötige Bewegungen zu vermeiden.

PLA Holz Filament Einstellungen

Die Drucktemperatur für die Verwendung von Holz Filament im PLA 3D Druck sollte zwischen 190 und 230 °C liegen. Für Geeetech-Holzfilament empfiehlt sich, die erste Schicht bei 220 °C zu drucken und danach auf 205 °C zu wechseln. Dabei verändert die Temperatur auch den Farbton: Je heißer der Druck, desto dunkler wirkt das Ergebnis. Für die Verwendung von PLA Holz Filament eignen sich außerdem folgende Einstellungen: Das Heizbett deines Druckers wird auf 60 °C eingestellt, die Druckgeschwindigkeit liegt bei 30 bis 50 mm/s, die Schichthöhe bei 0,25 mm. Der Lüfter sollte auf 50 bis 70 % laufen.

Welche Düse eignet sich?

Für Holz Filament im PLA 3D Druck ist die Wahl der Düse entscheidend. Grundsätzlich gilt: Je feiner die Düse, desto detailreicher das Ergebnis, und je größer die Öffnung, desto geringer die Gefahr einer Verstopfung durch Holzpartikel. In diesem Fall empfiehlt sich eine 0,6-mm-Düse, die das Risiko einer Verstopfung reduziert und für einen reibungslosen Partikelstrom sorgt.

Beispiele aus dem Holz 3D Druck

Ein Blick auf konkrete Modelle zeigt, welches Potenzial Holz Filament hat und wie überzeugend die 3D Druck Ergebnisse ausfallen können. Mit den richtigen Einstellungen im Holz 3D Druck entstehen Objekte, die dekorativ und zugleich praktisch sind.

Blumentopf

3D-gedruckter Blumentopf
Blumentopf, hergestellt mit Geeetech Poplar Wood PLA-Filament

Mit Holz PLA entsteht ein kleiner Pflanztopf, dessen Oberfläche durch feine Rillen und eine warme Maserung besticht. Nach leichtem Schleifen oder Ölen wirkt er fast wie aus echtem Holz gefertigt – ein ideales Beispiel dafür, wie sich 3D Druck aus Holz harmonisch in den Alltag einfügt.

Holzornament

Holzornament
Holzornament, hergestellt mit Geeetech Wood PLA-Filament

Auch filigrane Ornamente profitieren vom Einsatz von Wood 3D Filament. Durch die matte Oberfläche und die feine Struktur entstehen natürliche Deko-Elemente, die an handgeschnitzte Arbeiten erinnern. Mit moderater Druckgeschwindigkeit und sauberer Kühlung lassen sich gleichmäßige Konturen erzielen.

Würfel (Kundenbeispiel)

3d druck holz Würfel
Würfel, gedruckt mit Geeetech Walnut Wood PLA-Filament (aus einer Kundenrezension)

Ein Nutzer druckte mit Walnuss Holz PLA einen Testwürfel. Grundlage war ein Profil auf Basis von PLA Filament, angepasst mit einer reduzierten volumetrischen Rate von 10 mm³/s. Die Düsenerwärmung lag bei 205 °C, das Bett bei 60 °C, der Flow bei 0,98 und der K-Wert für Pressure Advance bei etwa 0,0175. Das Ergebnis: glatte Seitenwände, eine Holztextur, die Layerlinien nahezu verschwinden lässt, und nur leichte Lücken im Top-Layer. Dieses Beispiel zeigt, wie präzise Einstellungen zu hervorragenden 3D Druck Ergebnissen mit Holzfilament führen.

Fazit

3D Druck Filament aus Holz verbindet die Natürlichkeit von Holz mit der Druckfreundlichkeit von PLA. Mit den richtigen 3D Drucker Einstellungen entstehen Objekte, die sowohl optisch als auch haptisch überzeugen. Wer moderate Geschwindigkeiten, ein sauberes Kühlmanagement und die empfohlenen Düsen einsetzt, kann durch gezieltes Temperaturtuning Farbnuancen steuern und die Oberfläche individuell gestalten. Somit wird Holz PLA Filament zu einem vielseitigen Material für dekorative und praktische 3D-Druck-Projekte.

]]>
https://blog.geeetech.com/deutsche-kolumne/alles-was-sie-uber-holz-filament-wissen-mussen/feed/ 1
FDM 3D Druck vs. Lasergravur: Welche Technologie passt zu dir? https://blog.geeetech.com/deutsche-kolumne/fdm-3d-druck-vs-lasergravur-welche-technologie-passt-zu-dir/ Sun, 31 Aug 2025 15:24:41 +0000 https://blog.geeetech.com/?p=13316 Wer heute eigene Druckprojekte realisiert – von Halterungen bis Geschenkideen – landet meist bei zwei Verfahren: FDM 3D Druck und Lasergravur. Beide sind erschwinglich, präzise und schnell umgesetzt.Dieser Leitfaden erklärt verständlich, FDM 3D Druck vs. Lasergravur, einschließlich ihrer Unterschiede und Einsatzbereiche, wie ein 3D Drucker funktioniert, welches Material 3D-Drucken für welche Ziele erfordert, und wann Laserschneiden brilliert.

Funktionsprinzip

Das Verständnis der beiden Prozesse beginnt in der Regel mit dem Verständnis, wie sie funktionieren.

Was ist FDM 3D Druck?

Beim FDM 3D Druck schmilzt ein FDM Drucker thermoplastisches Filament und legt es Schicht für Schicht ab. In der Praxis wählst du dein 3D Drucker Filament (z. B. PLA Filament), legst Düs­en­temperatur, Layerhöhe und Geschwindigkeit fest und der Drucker baut das Bauteil nach und nach auf. Kurz gesagt: ein 3D Drucker funktioniert durch präzises, wiederholtes Ablegen von geschmolzenes Filament.

FDM 3D Druck
FDM 3D Druck

Was ist Lasergravur?

Die Lasergravur nutzt einen fokussierten Strahl, der Oberflächen markiert, abdunkelt oder Material abträgt. So entstehen Logos, Muster, Texte und – je nach Setup – feine Schnitte. 3D Lasergravur erzeugt Relief-Effekte, während Laserschneiden Konturen in Plattenmaterial trennt. Besonders verbreitet: Lasergravur auf Holz und Lasergravur auf Leder für personalisierte Accessoires. Für präzise Schnitte braucht es einen passenden Laser zum Schneiden von Holz und Leder.

Lasergravur
Lasergravur

Materialien

Die Materialien, die beim 3D-Druck und der Lasergravur verwendet werden, sind völlig unterschiedlich. Lass uns einen genaueren Blick darauf werfen.

Materialien im FDM 3D Druck

FDM verarbeitet für das 3D Drucken eine breite Materialpalette: PLA Filament (einfach zu drucken, formstabil), PETG (zäher), ABS (temperaturfester), TPU (flexibel), ASA (outdoor-tauglich) oder Nylon (verschleißarm).Mit hochwertigem 3D-Drucker-Filament kannst du alles abdecken, von Dekorationsobjekten bis hin zu Montagehilfen. Tipp: Für sichtbare Oberflächen eignet sich PLA-Filament, für funktionale Teile je nach Beanspruchung PETG, ASA oder Nylon.

3D-Druck-Materialien
3D-Druck-Materialien

Materialien in der Lasergravur

Das Ergebnis der Lasergravur hängt stark vom verwendeten Material ab. Lasergravur für Holz liefert hohe Kontraste und eine warme Anmutung; Acryl eignet sich zum Markieren und sauberen Laserschneiden; Lasergravur auf Leder sorgt für haptische, dauerhafte Personalisierungen. Für klare, ausrissarme Konturen beim Laserschneiden mit Holz braucht es den richtigen Laser und eine stimmige Fokussierung; ein Laser zum Schneiden von Holz ist ideal für Frontplatten, Puzzle und Inlays. Auch 3D Lasergravur auf geeigneten Substraten erzeugt eindrucksvolle Reliefs.

Vorteile und Nachteile

Kein Verfahren ist perfekt. Wir werden oft von ihren Vorteilen angezogen, aber wir sollten auch ihre Einschränkungen verstehen und uns auf mögliche Einschränkungen einstellen.

Vorteile

Der FDM 3D Druck überzeugt vor allem durch die Erzeugung von echtem Volumen – selbst komplexe Geometrien mit Hohlräumen lassen sich problemlos umsetzen. Dank der großen Auswahl an 3D Druck Material und 3D Drucker Filament, von PLA Filament bis hin zu Nylon, findet sich für nahezu jedes Projekt das passende Material. Ein weiterer Vorteil ist die Geschwindigkeit bei Iterationen: CAD-Modell anpassen, neu drucken, testen – so lässt sich ein Entwurf in kurzer Zeit weiterentwickeln, insbesondere mit dem richtigen Filament, das ein zentraler Faktor für die Qualität des 3D Drucks ist.

Die Lasergravur und das Laserschneiden punkten mit einer anderen Stärke: Hier stehen höchste Detailtreue, feine Linien und absolut glatte Schnittkanten im Vordergrund. Besonders das Laserschneiden liefert schnelle und präzise Konturen in Plattenmaterialien, wodurch saubere Ergebnisse auch bei filigranen Formen entstehen. Darüber hinaus sind Gravuren dauerhaft haltbar – gerade Lasergravur in Holz oder Lasergravur auf Leder wirken nicht nur edel, sondern verleihen Objekten eine hochwertige, persönliche Note.

Nachteile

Der FDM 3D Druck bringt trotz seiner Vorteile auch Herausforderungen mit sich. So sind die Schichten oft sichtbar, wodurch eine Nachbearbeitung – etwa durch Schleifen oder Grundieren – notwendig werden kann, wenn eine glatte Oberfläche gewünscht ist. Zudem weist das Verfahren eine anisotrope Festigkeit auf: Die Stabilität hängt stark vom Schichtaufbau und der Haftung des verwendeten Filaments ab, was bei funktionalen Bauteilen berücksichtigt werden muss.

Auch die Lasergravur und das Laserschneiden haben ihre Grenzen. Da es sich überwiegend um 2D-Bearbeitungen handelt, lassen sich keine freistehenden 3D-Volumen erzeugen; hierfür benötigst du erneut den FDM 3D Druck und zugehöriges 3D Druck Filament. Außerdem ist bei bestimmten Materialien oder Materialstärken ein spezieller Laser beziehungsweise ein individuell angepasstes Setup erforderlich, um saubere und präzise Ergebnisse zu erzielen.

Anwendungen

3D-Druck und Lasergravur zeigen ihren Wert in verschiedenen Anwendungen.

Anwendungen des FDM 3D Drucks

Prototypen, Ersatzteile, Gehäuse, Halterungen, Lernmodelle: Der FDM 3D Druck ist ideal, wenn Form, Passung und Funktion zählen. Mit PLA Filament testest du schnell Designs; anschließend wechselst du bei Bedarf das Material zum 3D Drucken für mehr Zähigkeit oder Temperaturbeständigkeit. Geeetech bietet dafür robuste 3D Drucker und konsistentes 3D Drucker Filament.

3D-gedruckte Modelle
3D-gedruckte Modelle

Anwendungen der Lasergravur

Beschilderungen, Typenschilder, Geschenke, Kleinserien: Lasergravur liefert gestochen scharfe Ergebnisse. Lasergravur in Holz für Innenausstattung, Lasergravur auf Leder für Unikate, 3D Lasergravur für Reliefs.

Anwendungen der Lasergravur
Anwendungen der Lasergravur

Fazit

Beide Verfahren ergänzen sich hervorragend: FDM 3D Druck baut Volumen, Lasergravur veredelt Oberflächen und trennt Konturen über Laserschneiden. Für Funktionsbauteile und schnelle Iterationen nimmst du am besten den FDM Drucker plus passendes 3D Drucker Filament (oft PLA Filament zum Start). Für Markierungen, Logos und filigrane Konturen setzt du auf Lasergravur. Mit Geeetech erhältst du eine verlässliche Basis für beide Wege für die additive Fertigung – vom ersten Test bis zum sauberen Endteil.

]]>
How to Recycle 3D Printer Filament https://blog.geeetech.com/materials/3d-printing-filament/how-to-recycle-3d-printer-filament/ Sat, 30 Aug 2025 10:35:10 +0000 https://blog.geeetech.com/?p=13308 If you have ever printed with your own 3D printer at home, you might have wondered what to do with 3D printer waste, and whether you could possibly recycle 3D printer filament at home. It is not a topic many people talk about in great detail, so this article will try to clear things up. Enjoy!

Why Should We Recycle 3D Printer Filament?

Every print that fails halfway through, or creates extra string and other unwanted extrusions, adds to the big pile of wasted filament that often just gets thrown out in the trash. This is especially true for multi-color 3D printers, since we not only deal with support rafts and test cubes, but also purge blocks and filament switches generated during prints.

The Environmental Aspect

This leads us to use way more filament than we really need to, which in turn can create an environmental impact in the long run, especially when thinking of printers around the globe creating a significant amount of waste on a daily basis.

The Economic Aspect

Throwing away perfectly good plastic not only wastes money, leading us to buy more and spend more on the material we waste, but potentially drives up the cost through supply and demand chains.

The Educational Aspect

Finally, if you are printing with your children, it can be a great way to look at recycling 3D printer filament in order to educate them about how to take better care of the environment and how to respect our planet. So let us take a closer look at some different methods and programs below.

Recycling by Companies

Many 3D printing material manufacturing companies have their own recycling programs, where the recycled plastic filament will be remade into fresh filament ready to be used for printers or other purposes. This is called “recycled filament”, and can often be cheaper but still a great overall material.

Other plastic product companies also place plastic recycling bins in the community to specifically collect filament and other types of plastic that can be recycled safely and effectively, so there are a few great alternatives to simply throwing out your old filament in the trash bin directly.

Recycling plastic in the community
Recycling plastic in the community

Recycling at Home

Another way you can recycle filaments is if you are willing to put in some more work at home, where you can use different methods in order to achieve some good results that are environmentally friendly, sustainable and cost-effective filament recycling.  

Step 1: Sorting the waste filaments

Typically, you will want to sort your different types of filament based on the material, so ABS in one pile, PLA in another pile and so forth. Different types of materials cannot be mixed as they have different chemical makeups. Next, you can also sort by color if you like.

Step 2: Shredding

If you have a messy ball of old stringy material, or half a 3D print that failed for some reason, you will need to process this. Typically, it is done by shredding, by putting the printing waste into a 3d printer shredder and then breaking it into small pieces.

Your goal should be to get small and uniform fragments, as this will help you later on when you have to melt and extrude the wasted filament. Not everyone has the money for a specially designed shredder, so an alternative is a pair of scissors or wire strippers to cut up the plastic into smaller chunks.

Step 3: Drying

Before you are ready to manipulate the waste filament, you should first ensure it is free of any moisture. This is done by drying your filament poops or scraps which have been shredded by you, either using a dedicated filament dryer, or some of the easily available tools at home, like an oven (preferably with a convection fan), a rice cooker (on “keep warm” mode) or similar methods. Below you will find our recommended settings for dedicated dryer machines.

Dedicated filament dryer settings:

MaterialDrying TemperatureDrying TimeNotes
PLA45°C – 50°C (113°F – 122°F)4 – 6 hoursAvoid higher temperatures, as PLA can become soft and even fuse together.
PETG60°C – 65°C (140°F – 149°F)6 – 8 hoursMore hygroscopic than PLA, requiring higher temperatures and longer times.
ABS70°C – 80°C (158°F – 176°F)4 – 6 hoursRequires relatively high temperatures to effectively remove moisture.
Nylon (PA)70°C – 80°C (158°F – 176°F)8 – 12+ hoursExtremely hygroscopic. Often requires 12+ hours, or even 24 hours for severely wet material.
TPU/TPE50°C – 55°C (122°F – 131°F)6 – 8 hoursFlexible materials are also prone to moisture absorption.


For safety reasons, only PLA is chosen for home recycling as it does not release any toxic fumes and so on.

Oven:
Spread the fragments on a baking tray (lined with parchment paper). Set the oven to its lowest possible temperature (typically no higher than 65-80°C ), and leave the door slightly ajar to release moisture. Bake for 30-60 minutes, watching closely to prevent melting.

Dry the Plastic fragments in oven
Drying the Plastic fragments in oven

Rice Cooker:
Place fragments in the pot, turn on the “keep warm” setting, and leave the lid slightly open with a chopstick for 4-6 hours.

Step 4: Extruding/Melting and Molding

Professional:

If you are printing often, and tend to collect large amounts of waste material, then it can be a good investment to purchase a special filament extruder, also known as a 3d printer filament recycler, to help you create recycled filament at home. This makes it easy and efficient, as the machine will simply need to be fed the processed 3D printing materials, then it will “spit out” the correct type of filament in terms of size and consistency.

Extruding filament
Extruding filament

Household:

However, due to the high price of filament extruder, it is not cost-effective for home enthusiasts that print only rarely, or anyone on a budget. Luckily, there are some a creative workarounds, namely melting and molding. By following the steps below, you can get some good results with a little practice.

  1. Fill the plastic fragments into a can, no more than 1/3 full with PLA filament fragments.
  2. Hold the can steadily over the heat source with your tongs. Constantly move the can to distribute heat.
  3. The fragments will first soften (1-2 minutes), then clump together, and finally become a viscous, molten liquid. At some point you will see it bubbling, this is any remaining moisture boiling away. Once the bubbling mostly stops, you have a thick, honey-like liquid.
  4. This entire melting process typically takes 3 to 6 minutes per small batch. Do not overheat until it smokes, as this degrades the plastic.
Heating plastic fragments
Heating plastic fragments
  1. Now it is time to pour. Carefully pour the molten PLA into your silicone mold.
pouring the molten PLA into the silicone mold
Pouring the molten PLA into the silicone mold

Step 5: Spooling & Cooling

Professional:

If you have invested in a filament extruder, you might have gotten a special cooling tank or some other gadget to help with the cooling and spooling process, as the extruded hot filament needs to be cooled and set immediately through a fan or water-cooling tank. After cooling, it is evenly wound onto the empty spool through a reel.

Household:

If you are doing this on a budget you can also get some good results with some care. First you need to let the mold sit undisturbed and cool down. Smaller amounts of filament will typically be cool to the touch and solid in 15-30 minutes. Larger objects may take over an hour. Do not try to demold early, as the plastic can be flexible but still soft. Once the material is cooled down you can demold.

Conclusion

This was a quick guide on how to recycle 3D printing filaments. We could go into much more detail with each step, so if you are unsure about anything be sure to research even further to learn the different techniques, or even watch a video or two so that you fully understand all the steps. We hope this guide helped, and made you think about all the wasted material next time you print. Take care!

]]>
3D Print Filaments for Outdoor Use https://blog.geeetech.com/materials/3d-print-filaments-for-outdoor-use/ Thu, 14 Aug 2025 08:00:21 +0000 https://blog.geeetech.com/?p=13292 If you have ever printed 3D designs made for outdoor use, you will most likely have noticed a big difference in performance and durability depending on the different filaments that were used. So to help you decide which option to pick for different outdoor scenarios, let us take a closer look today. Enjoy!

Properties of 3D Filament for Outdoor Use

It is important to understand what properties 3D printer filaments should have when using them outdoors, as they will need to withstand the environment in ways that indoor models generally do not. Below we have listed some of the most important ones.

Weather Resistance

General resistance to the weather in your area is one of the most important factors, so if you live in an area with lots of sunlight, UV-resistant filament should be a priority for your 3D filaments. The same is true for temperature resistance, low or high, so certain filaments hold up better under cold conditions while other filament materials are more ideal for hot conditions. Finally, you’ll want to look at moisture and humidity as well as waterproof capability.

PLA weathering outdoors

Mechanical Property

Depending on what your 3D print is used for, you might also want to ensure that the filament in question has a decent impact resistance, abrasion resistance or even long-term load-bearing capacity if you are using it to hold certain items in place (like brackets), as this will also narrow down your options of filaments.

Chemical Stability

And finally, some outdoor environments make it crucial for you to consider corrosion resistance and oxidation resistance, especially if you live near the ocean, where moisture, salt and pollutants from the sea can degrade your model, or harsher environments where the air quality and UV radiation might oxidize your models earlier than intended.

Comparison of Filaments Suitable for Outdoor Use

Below we have provided an overview of the main characteristics for each of the following 5 filaments, ASA, PETG, PC, Nylon and TPU. As well as some recommended application scenarios of these materials.

PropertyASAPETGPCNylonTPU
UV ResistanceExcellentGoodModeratePoorModerate
Temp ResistanceHigh (80-100°C)Moderate (70-85°C)Very High (110-135°C)Moderate (80-100°C)Moderate (50-80°C)
Water ResistanceGoodExcellentGoodPoor (absorbs)Excellent
Impact ResistanceHighModerateVery HighHighVery High (flexible)
Abrasion ResistanceGoodModerateExcellentGoodExcellent
Load-BearingGoodModerateExcellent (rigid)Good (flexible)Poor (too soft)
Chemical StabilityExcellent (resists corrosion)Good (resists moisture)Excellent (resists oils, chemicals)Moderate (absorbs moisture)Good (resists oils, solvents)
Best ForOutdoor signs, automotive parts, fixturesWaterproof containers, garden toolsHigh-strength structural parts, helmetsFunctional gears, hingesSeals, gaskets, flexible parts

ASA Filament

As you can see in the table above, ASA filament is generally the best filament for outdoor use, as it works well for most scenarios.  ASA performs more stably in extreme climates. It has excellent UV resistance and is not prone to fading or becoming brittle even after long-term exposure to sunlight, and Good water resistance and excellent chemical resistance.
But its printing difficulty is relatively high, requiring a heated bed and a closed printing cabin. It is prone to curling edges. The cost of ASA filament is also relatively high, around $30/KG.

PETG Filament

Next up, we have PETG 3D printer filament which is not as temperature resistant, but is a great water safe 3D printer filament, making it a good option in climates where it often rains, as well as for garden utilities such as planter boxes or similar. The PETG UV resistance is also decent, but a little poorer than ASA. If your budget is not sufficient to choose ASA, or if your print is not used in extreme weather, PETG will be a more cost-effective option. And PETG’s threshold for printing skill is also lower than that of ASA.
Click here to buy PETG filament bundle.

PETG 3D Printer filament
Geeetech PETG 3D Printer filament

PC Filament

The highest performing material for high temperature tolerance is polycarbonate filament and it can be a major determinant in specific situations. Generally speaking, this high temp 3D printer filament also does an excellent job of enduring most other elements as well and is an excellent choice for a wide variety of builds.

Nylon Filament

Nylon filament can be a great option for functional parts that are not directly exposed to water, as the water absorption property is a main downside of nylon as a material in many cases. It is considered quite a decent heat resistant 3D printer filament as well, making it applicable for a number of uses. There are also reinforced versions of nylon on the market that are chosen by outdoor enthusiasts.

TPU Filament

And finally, TPU filament is quite poor in terms of temperature resistance, and also not a great option for load-bearing projects. However even the lower point of 50°C is more than enough for outdoor use in most parts of the world, and the impact resistance property of TPU filaments is the best out of the filaments we have covered, making it great for parts or items needing that extra strength, and some flexible components (like outdoor water bottle sealing rings and garden faucet sealing rings) that can’t be printed by ASA, PETG and others strong 3d printer filament.

tpu sealing rings
TPU sealing rings

How to Improve Prints’ Outdoor Durability?

Now that we have categorized the properties of different 3D printing filaments for outdoor use according to the main factors playing a role in durability, it is worth noting that we also have the option of enhancing the durability even further with post-processing or when designing our models.

Post-Processing

Once your design is finished in the printer, you can further improve durability by spraying UV protective paint on your models in order to further increase their resistance to sunlight, and avoid them losing strength or fading as rapidly. In general this can be applied to all types of materials, but each type of filament might require a different product, so be sure to research what works for ASA or TPU for instance.

The same goes for waterproof coating that can make the models absorb less water, although this coating might need to be reapplied in extreme cases. You can also chemically smooth your prints in order to seal the layer lines, while also reducing the penetration of moisture, thus making your models last longer.

Optimization Design

No matter which filament you use on your 3D printer, you’ll always be able to choose to design your models with more material to make them stronger. For example, you may want to make the walls thicker so you’ll get more strength and resistance, and the models won’t degrade so easily as the extra layers will be slower to degrade over time naturally.

You should also consider avoiding water accumulation structures, as some designs might have pockets that catch water and let it sit, so design your models according to the environment in order to optimize and provide a longer lifespan.

water accumulation structure and drainage structure design
water accumulation structure vs. drainage structure design

Conclusion

All in all, we have many fantastic options for printing 3D models designed to be used outdoors, that can last a long time while also maintaining their structural integrity and beautiful surfaces. And by taking a little extra time to plan ahead and make sure you use the best possible filament, perform post-processing if needed and optimize the design to fit the environment, your designs can last for years without any issue. We hope you enjoyed this article and learned something. Thanks for now!

]]>