What Is a Brim in 3D Printing and When to Use It? | Geeetech https://blog.geeetech.com Get Your Ideas Into Life Tue, 30 Dec 2025 08:23:21 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.3 https://blog.geeetech.com/wp-content/uploads/2025/06/cropped-blog-logo-32x32.png What Is a Brim in 3D Printing and When to Use It? | Geeetech https://blog.geeetech.com 32 32 What Is a Brim in 3D Printing and When to Use It? https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/what-is-a-brim-in-3d-printing-and-when-to-use-it/ https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/what-is-a-brim-in-3d-printing-and-when-to-use-it/#respond Tue, 30 Dec 2025 07:55:17 +0000 https://blog.geeetech.com/?p=13520 For anyone who has 3D printed more than a few times, chances are that they have experienced their 3D prints slowly peeling off the bed during the process. Most of the time, this leads to a failed result because of warping or other problems, because the 3D model does not adhere well enough to the bed. The solution is to use a brim to help secure the object snugly on the print bed. So let us take a closer look at how it works.

What Is a Brim in 3D Printing?

As the name suggests, brim refers to the extended part of a hat used for covering. Similarly, in 3D printing, it also refers to the extended part. The part that extends from the first layer is mainly used to prevent the edges of the prints from warping.

A brim is not a support structure in the traditional sense, but rather a build plate adhesion aid. When comparing raft vs. brim, both serve to improve first-layer adhesion, but they differ significantly in cost and complexity. A raft is more time-consuming and material-intensive, while a brim consists of a single-layer extension around the base of the model. Brims are quick to generate, use minimal material, and are often sufficient for improving print reliability.

Purpose of a Brim

The main purpose of using a 3D printing brim when producing your designs, is to help the bed adhesion of your objects. The brim makes a much larger contact area, which helps risk of corners and edges lifting while printing. The brim can also provide more stability for tall objects or narrow models, making them less likely to fall over because of limited footprint or printer-induced vibrations.

When to Use a Brim in 3D Printing?

Okay, so now you know the definition and purpose of a brim, let’s look at when to use them.

Model with a Small Contact Area

Generally speaking, it is a good idea to use brim when printing small models that do not have much contact area on the bed itself. Think of it like glue, adding some more to help fix the model during printing. Small models generally require more anchoring.

Materials with High Risk of Warping

Some 3D printing filaments are at a greater risk of warping than others. For instance, ABS, ASA and nylon exhibit relatively high thermal shrinkage as they cool. This shrinkage generates internal stress, increasing the likelihood of edges or corners lifting and losing proper adhesion to the build plate. The same goes for some polycarbonate filaments as well.

Tall & Slender Models

Like models that have a small contact area, if the 3D printed object is very tall or very narrow, it can also be necessary to use brims since these designs have a high center of gravity that makes it easy for them to topple over or detach. By increasing the effective base area, a brim improves stability and reduces the risk of detachment.

Models with Pointed or Narrow Bases

If your models don’t have fully flat bottoms, it can also be a good idea to add a brim as it will add base contact area to 3D print​ models for improving lateral stability and helping the print remain securely attached to the build plate.

Marginal Bed Adhesion

If first-layer adhesion is inconsistent or borderline, and the printer is otherwise properly calibrated, using a 3D printer brim can improve overall print reliability. Think of it as a safety net that provides additional bed adhesion.

Common Cases of Brim Misuse

On the other hand, some models might not need a brim, and not using one can help speed up the print and cut down on material use.

Models with a Large, Flat Base

If your model already has a large and flat bottom portion, it will most likely adhere well to the print bed on its own. Therefore, you will not need to consider brim 3D printing techniques.

Unnecessary brim with a flat base
Unnecessary brim
model from Quentinyu@Makerworld

High-Detail or Aesthetic Parts

Some models might traditionally need a brim, but please remember that the brim leaves a rough edge where it detaches, requiring post-processing. Brims can leave minor marks along the base of a print. This can be a concern for parts where the bottom surface is visually critical, but it is usually acceptable for prints that will undergo extensive post-processing.

Brims left minor marks along the base of a print
Brims left minor marks along the base of a print

Fix Problems Caused by Improper Settings

A brim cannot fundamentally solve the problems of gaps, unevenness and uneven line width in the first layer of prints. Brim should only be enabled when the first layer itself is perfect but still needs to prevent warping.

Using a brim instead of proper bed leveling and cleaning is wrong. A brim only increases surface contact, since it does not restore proper mechanical or surface adhesion.

How to Add a Brim in Slicer

Almost all popular 3D printing software makes it easy to add a brim to an existing 3D model. Below, we will take a look at some of the most common slicers.

Bambu Studio

When opening up Bambu Studio, first select your chosen 3D file in the prepare view section. Then click on the “Others” section, where you will then see 3D print brim settings. You can enable the brim here and then choose to adjust the brim width and gap parameters as you need.

Cura

In the print settings panel on the right, ensure you are in “Advanced” mode. For this to happen, you may need to click step 2, there are many settings configurations, so choose “Advanced”. Search for “Build Plate Adhesion Types” in the settings search bar. Set the “Build Plate Adhesion Type“ to “Brim”.

How to Set Brim Parameters

Ok, it is also important to know what the typical parameter settings look like. Below, we will provide what we have found works best for most prints, but feel free to experiment as you feel.

Brim Width

Typical range: 5–10 mm.

The brim width controls how far the brim extends from the model. Wider brims improve adhesion for tall or warp-prone models but use more filament and require more cleanup.

Brim Lines

Typical setting: 5–15 lines depending on model size.

The number of brim lines refers to the number of concentric lines around the model’s base. The more lines you add, the better adhesion to the bed while brim printing, but it uses more material and takes more time as well. So balancing this out can be a good idea.

Brim Gap

Typical setting: 0–0.4 mm.

The gap setting decides how wide the gap between the brim and the model itself is. The wider the gap, the easier removal. But the wider you make the brim object gap, the less adhesion to the bed the brim will actually provide.

Brim Type

Finally, you will also get the option to choose between some different types of brims. Most slicers have the following options at the very least. Full brim is the most common, but the outer-only brim can be a good option as it reduces the number of contact points, making it easier to remove afterwards.

  • Full brim: Standard, connects to all edges
  • Outer-only brim: Only outermost perimeter (Cura)
  • Inner brim: Experimental for specific cases

Conclusion

A brim is a simple but powerful tool in 3D printing to combat warping and improve bed adhesion for models with challenging geometries or made from tricky materials. While a brim is important, a well-calibrated 3D printer and a properly cleaned bed surface are most important to get the best and most reliable results. Happy printing!

]]>
https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/what-is-a-brim-in-3d-printing-and-when-to-use-it/feed/ 0
ASA vs. ABS: Welches Filament ist richtig für dich? https://blog.geeetech.com/deutsche-kolumne/asa-vs-abs-welches-filament-ist-richtig-fur-dich/ https://blog.geeetech.com/deutsche-kolumne/asa-vs-abs-welches-filament-ist-richtig-fur-dich/#respond Sat, 20 Dec 2025 10:37:58 +0000 https://blog.geeetech.com/?p=13500 Ob du Bauteile für den Innenraum druckst oder langlebige Modelle für draußen planst: Die Wahl zwischen ASA vs ABS gehört zu den grundlegenden Entscheidungen im 3D-Druck. Beide Materialien wirken auf den ersten Blick ähnlich, unterscheiden sich aber in Struktur, Verarbeitung und Einsatzzweck. Dieser Beitrag gibt einen Einblick.

ASA vs. ABS: Materialzusammensetzung

Wenn du vor der Entscheidung ASA oder ABS stehst, hilft ein Blick auf die Grundlagen: Beide Kunststoffe werden als 3D Drucker Filament eingesetzt, unterscheiden sich aber in ihrer inneren Struktur – und genau das macht den Unterschied im Alltagseinsatz aus.

Klassisches ABS Filament basiert auf drei Bausteinen: Acrylnitril, Butadien und Styrol. Dieses ABS Material ist zäh, formstabil und seit Jahren ein Standard im technischen Filament. Der Nachteil: Die Butadien-Komponente reagiert empfindlich auf Sonne und Wetter, was die Langzeitbeständigkeit im Außenbereich begrenzt.Zusammensetzung von abs

Beim ASA Filament – chemisch bestehend aus Acrylnitril, Styrol und Acrylat – wird das reaktive Butadien einfach durch ein stabiles Acrylat ersetzt. Dieses ASA Material behält viele Vorteile von ABS bei, ist aber deutlich besser gegen UV-Licht und Witterung geschützt. In der Praxis bedeutet das: Im direkten Vergleich ASA vs. ABS eignet sich ASA überall dort, wo du ein Filament UV-beständig brauchst, etwa für Outdoor-Bauteile, Gehäuse oder langlebige Funktionsbauteile im Freien.

Zusammensetzung von ASA

ASA vs. ABS: Eigenschaften

Damit du die Unterschiede im Filament besser einordnen kannst, lohnt sich ein direkter Blick auf die wichtigsten Kennwerte. Sowohl ASA Filamente als auch ABS Filament sind robuste Konstruktionskunststoffe, unterscheiden sich aber deutlich bei Wetterbeständigkeit, Verarbeitung und Emissionen.

Damit du die Unterschiede im Filament besser einordnen kannst, lohnt sich ein direkter Blick auf die wichtigsten Kennwerte. Sowohl ASA Filamente als auch ABS Filament sind robuste Konstruktionskunststoffe, unterscheiden sich aber deutlich bei Wetterbeständigkeit, Verarbeitung und Emissionen.

Eigenschaft

ASA Filament

ABS Filament

Praxisbedeutung

Wetter- & UV-Beständigkeit

Sehr gute UV-Stabilität, farb- und formtreu im Außenbereich

Schwache UV-Beständigkeit, Vergilbung und Materialabbau im Freien möglich.

ASA ideal für Outdoor-Projekte; ABS besser im Innenraum einsetzbar (Unterschiede im Filament werden hier klar sichtbar).

Hydrolyse-Beständigkeit

Etwas höhere Feuchtigkeitsresistenz über längere Zeit.

Moderat; das Butadien im Material ABS reagiert empfindlicher.

Beide Filamente funktionieren in feuchten Umgebungen, ASA bleibt jedoch langfristig stabiler.

Entflammbarkeit

Entflammbar, mit Additiven ggf. selbstlöschend – ähnlich wie ABS.

Ebenfalls entflammbar und in vielen mit Additiven ebenfalls selbstlöschend.

Nicht geeignet für Anwendungen, die eine hohe Flammhemmung ohne Zusatzstoffe erfordern.

Glasübergangstemperatur (Tg)

~100–110 °C

~100–105 °C

Beide Materialien widerstehen hohen Umgebungstemperaturen, z. B. im Auto.

Wärmeformbeständigkeit (HDT)

~95–105 °C unter 0,45 MPa.

~90–100 °C unter 0,45 MPa.

ASA minimal überlegen – wichtig für Bauteile mit ständigen Belastungen in warmen Umgebungen.

Thermische Ausdehnung

Hoch (ca. 8 × 10⁻⁵ /°C).

Sehr hoch (ca. 9 × 10⁻⁵ /°C).

Beide benötigen einen geschlossenen Bauraum und ein beheiztes Druckbett, um Warping zu vermeiden.

Druckeranforderungen

Geschlossene Kammer empfohlen (ASA 3D Druck läuft stabiler bei warmer Umgebung).

Geschlossene Kammer erforderlich.

Ohne warmen Bauraum steigt die Gefahr von Layer-Delamination bei beiden.

Warping-Neigung

Stark vorhanden, aber geringer als ABS.

Sehr stark und typisch für ABS.

ASA leichter zu kontrollieren; ABS erfordert sehr präzise Druckbedingungen.

Dämpfe / Geruch

Starker Geruch, gute Belüftung notwendig.

Sehr intensiver Geruch; teils beim ABS Drucken als giftig wahrgenommen

Beide nur mit Belüftung verwenden; ABS kritischer durch VOC-Emissionen.

Nachbearbeitung

Schleifen, Lackieren, Kleben möglich; Aceton-Glättung eingeschränkt umsetzbar.

Sehr gute Aceton-Glättung, hoher Glanz möglich.

ABS bietet beste Oberflächenpolitur; ASA punktet bei Outdoor-Einsatz.

ASA vs. ABS: 3D-Druck

Beim ASA 3D Druck und beim Druck mit ABS fällt vor allem die unterschiedliche Prozessstabilität auf: ABS neigt stark zu Warping und Rissbildung, weil es empfindlich auf Zugluft reagiert. ASA Filamente sind temperaturstabiler gegenüber Umwelteinflüssen, wirken jedoch geringfügig spröder.

3D-Druck-Einstellungen

Ein zentraler Unterschied liegt in der Temperaturführung: Die ASA Filament Temperatur liegt meist 5–10 °C höher als bei ABS. Beim Lüfter gilt: ABS benötigt geschlossenes Drucken ohne Kühlung, während man ASA drucken mit leichter Luftzufuhr deutlich stabilisieren kann.

Geeetech ABS – empfohlene Einstellungen in Cura:

  • Düsentemperatur: 230–250 °C
  • Heizbett: 80–100 °C
  • Retract-Distanz: 6 mm (Bowden), 2–3 mm (Direct Drive)
  • Retract-Geschwindigkeit: 25 mm/s
  • Kühlung: 0 %, erste Schicht 0 %
  • Haftung: Brim

Geeetech ASA – empfohlene Einstellungen:

  • Düsentemperatur: 240–270 °C
  • Heizbett: 80–110 °C
  • Kühlung: 40–50 %, erste Schicht 0 %
  • Haftung: Brim & Skirt

Oberflächenqualität

ABS liefert matte bis glänzende Oberflächen und lässt sich hervorragend polieren. ASA bleibt überwiegend matt, ist aber deutlich UV-beständiger und somit ideal für Anwendungen im Außenbereich.

ASA vs. ABS: Nachbearbeitung

In der Nachbearbeitung zeigt sich ein klarer Unterschied in der Entscheidung ASA vs. ABS: ABS Filament lässt sich hervorragend mit Aceton glätten, schleifen, lackieren und kleben – besonders attraktiv, wenn du eine hochglänzende Oberfläche anstrebst. ASA Filament kann ebenfalls geschliffen, geklebt und lackiert werden, wirkt beim Aceton-Finish jedoch etwas empfindlicher und benötigt mehr Sorgfalt. Für dekorative Projekte liefert ABS daher meist den glatteren Effekt, während ASA drucken optisch eher matt bleibt, dafür aber im Außenbereich beständiger ist – ein typischer Materialkompromiss bei beiden Filament-Typen. ABS eignet sich besser für die Nachbearbeitung und optische Optimierung.

Anwendungen

Ob ASA oder ABS sinnvoll ist, hängt von Temperatur- und Umgebungsanforderungen ab. Im Innenbereich punktet ABS mit seiner einfachen Nachbearbeitung und eignet sich für technische Bauteile, Modellbau oder robuste Gehäuse, gerade wenn das Material ABS hitzebeständig eingesetzt wird. ASA Material spielt seine Stärke draußen aus: UV-beständige Teile für Fahrzeuge, Gartenobjekte oder Drohnenrahmen bleiben stabil und farbecht. Wenn du 3D Drucker Filament kaufen möchtest, solltest du dich daher an der späteren Nutzung orientieren – Indoor oft ABS, Outdoor nahezu immer ASA.

Fazit

Beim Vergleich ASA vs. ABS zeigt sich: Beide sind vielseitige 3D Drucker Filament Optionen. ABS 3D Druck überzeugt mit Nachbearbeitbarkeit und hohen Detailoberflächen, während ASA 3D Druck für langlebige, wetterfeste Anwendungen die bessere Wahl ist. Für präzise Funktionsbauteile im Innenraum arbeitest du effizient mit ABS Filament, für starke Außenteile mit ASA Filament. Die Entscheidung ASA oder ABS hängt deshalb weniger vom Drucker ab, sondern von deinem Projektziel – und genau danach solltest du dein nächstes 3D Drucker Filament kaufen.

]]>
https://blog.geeetech.com/deutsche-kolumne/asa-vs-abs-welches-filament-ist-richtig-fur-dich/feed/ 0
The Ultimate Guide to Clear 3D Filament https://blog.geeetech.com/materials/the-ultimate-guide-to-clear-3d-filament/ https://blog.geeetech.com/materials/the-ultimate-guide-to-clear-3d-filament/#respond Tue, 09 Dec 2025 10:50:09 +0000 https://blog.geeetech.com/?p=13486 Creating, designing and printing new objects is always exciting, no matter the specific filament. However, when adding in unique and special materials, you can easily add yet another layer of interest to your prints. For instance, clear 3D printing filament that is transparent can not only be used to great visual effect, but also create some new and interesting uses. So let’s take a closer look at this guide where we cover all you need to know. Enjoy!

What Makes Filament Clear?

There are three major components that make up transparent filament, whether we’re talking about clear PLA filament or others 3D printer filament. In short, it will depend on the overall composition and purity of the base material used in the clear filament, meaning what particles and additives are used. The internal structure also plays a role when it comes to the manufacturing process, as the structure should be quite uniform and without pigmented materials.

Geeetech clear PLA filament
Geeetech clear PLA filament

And finally, when chasing clear 3D prints, it is also important that light is able to pass the transparent 3D printer filament uninterrupted. This depends on how light interacts with the material’s microstructure. The core principle lies in whether there are “light-scattering centers” inside the material, meaning that the light should not come into contact with a dense group of polymers or particles. Below is a quick table showing the characteristics necessary.

Key FactorWhat Makes It ClearWhat Makes It Opaque 
CompositionPure base material with minimal additives.Loaded with pigments (e.g., colorants, glitter) or fillers that block light.
Internal StructureSmooth and uniform at a microscopic level.Filled with countless particles that act like a dense “light-blocking fog.”
Light’s JourneyLight passes straight through or with only minor haze.Light gets lost—constantly scattered and absorbed until no light gets through.

The base material used should be made up of amorphous polymers, as the microstructure (the molecules) will have a random arrangement. This makes it possible for light to flow through the filament without scattering and diffusing the light, thus keeping the 3D printed object transparent to a large degree. On the other hand, semi-crystalline polymers form compact microstructures that can have colored pigment for an opaque result.

The additives used in the transparent 3D filament are another important factor. Typically, manufacturers often use a range of different additives to enrich their filament with vibrant colors, add a fake wood look thanks to sawdust or metal flakes, etc. When it comes to the best transparent filament types, they don’t have dyes, fillers or matting agents included, as this will break up the light and make the object more opaque.

Now that you have selected a clear filament and loaded it into your printer, you will also need to control the printing settings for the best results. We cover this in more detail below, so for now, all you need to know is that each layer can become a small boundary in itself where the light can refract and reflect, which is the main issue people experience when trying clear 3D printing techniques.

How to Choose the Best Clear Filament?

To select the most suitable clear filament, you need to balance optical clarity, tensile strength and printability according to your project’s needs. PLA provides ease of use and printability, whereas PETG is more durable and has better optical clarity. However, printing with PETG has more complicated print parameters than printing with PLA.

Translucent PLA vs PETG​

Translucent PLA prints easily and consistently, making it ideal for beginners or projects where light diffusion is acceptable rather than true clarity. It retains detail well but traps more visible layer lines, limiting how transparent it can become even with post-processing.

Translucent PETG prints feature much stronger interlayer adhesion and can withstand higher temperatures and, when tuned properly for drying and other properties, may be much clearer. Although stringing and drying conditions must be more closely controlled on PETG prints than on other prints, PETG would be more desirable if a glass-like effect is desired.

Due to the differences in their molecular structures and the resulting different ways of light scattering, under normal printing settings, Translucent PLA looks more milk white, PETG is clearer.

Translucent PLA vs PETG​
Translucent PLA vs PETG​

What Can Clear 3D Printer Filament Be Used For?

A clear 3D printing filament is best suited for uses that require light transmission and transparency. It may be used for creating lenses and lighting cover-ups and as a decoration item, prototype model with hidden elements, container for various fluids, and artworks portraying glass and crystal.

In many functional scenarios, your detailed prints can also be utilized as housing enclosures, inspection tools for laboratories and engineering models that enable individuals to see through them to observe the internal structures of their part designs. When creating parts and when producing prints for design, using transparent filaments provides an aesthetically unique style that can be unlocked only with clear filaments, making them a great choice for these purposes.

Understanding your own intentions and the uses of the filament is the key to choosing the best clear filament.
If you need to print objects that can be used at room temperature indoors, choose PLA. If you need to print functional, tough, impact-resistant, shock-resistant objects that can be used at high temperatures, then PETG is a more suitable choice.

How to Improve Transparency in 3D Printing?

In 3D printing, optically clear objects mean managing moisture, printing parameters, material extrusion, and surface finishes. Small deficiencies such as micro-bubbles, layer lines, and layer adhesion can cause objects to appear cloudy and whitish due to deflected light pathways. These methods can be employed for optimal transparency and more glass-like objects.

Printing Settings

In 3D printing, optically clear objects mean managing moisture, printing parameters, material extrusion, and surface finishes. Small deficiencies such as micro-bubbles, layer lines, and layer adhesion can cause objects to appear cloudy and whitish due to deflected light pathways. These methods can be employed for optimal transparency and more glass-like objects.

Drying Filaments

This is the most important phase. Dehydration-sensitive materials such as PETG, TPU, and nylon tend to create micro-bubbles upon being exposed to heat. It is important to dry the materials prior to use and then package and seal them to prevent them from getting wet again.

Increase the Printing Temperature

A slight increase in the nozzle temperature above the normal range can be beneficial for bonding layers, which reduces internal voids, then light is more likely to pass in a straight line inside. Thereby increasing transparency.

However, too much heat can compromise the material properties and strength and thus lower transparency. Therefore, it is very important to control the temperature range, generally, +5~15℃.

Reducing the Printing Speed

By printing at a slower rate, you allow extra time for the filament to melt and flow completely, which improves the interlayer adhesion strength and creates a smoother, clearer surface finish. Slower printing also creates less internal stress on the filament and fewer bubbles trapped within the filament. It is recommended to set the printing speed at 20~40 mm/s and make adjustments based on the specific situation.

Increase the Layer Height

By setting your layer height to a range between 0.2 ~ 0.28mm, this ensures fewer layers overall that end up being printed, thus creating fewer spots on each item that light scatters when passed through your print. A larger nozzle with a range between 0.6 and 0.8mm ensures greater clarity is achieved on prints due to the thicker lines produced by your nozzle. However, it is crucial that the printing temperature be simultaneously raised and the printing speed reduced to ensure that these thicker material layers can be fully fused to form a uniform whole. Otherwise, merely increasing the size will instead make the printing defects more obvious.

Enable Spiralize Outer Contour (Vase Mode)

For single-wall prints without top layers, Vase Mode creates a continuous, seamless extrusion. This eliminates layer seams and discontinuities, dramatically improving optical clarity in hollow or display-only models. Following is a transparent PETG lampshade printed in vase mode.

A transparent PETG lampshade printed in vase mode
Lampshade printed in vase mode by Geeetech transparent PETG filament

Using Transparent or Glossy Printing Plates

A smooth, reflective build surface improves the clarity of the bottom layer and reduces surface haze. Clean the plate thoroughly to avoid artifacts that propagate upward through the print.

Enable “Minimum Retraction” or Disable Retraction

Retraction can create micro-defects, stringing, or small blobs, all of which are very visible in transparent materials. Reducing or disabling retraction minimizes these marks. If needed, combine this with good pressure advance calibration for consistent extrusion.

Reduce the Infill Density

And finally, lower infill allows more uninterrupted light transmission through the model. For maximum clarity, use low-density infill or print hollow parts when the design permits.

Clear PETG with different infill density, the lower the filling density, the higher the transparency
Clear PETG with different infill density, the lower the filling density, the higher the transparency

Post-Processing

The transparency of a print can be greatly improved after it has been printed. When using a method called post-processing, a clear print looks like a piece of glass, if you will. The post-processing methods below will help you do just that.

Sanding

Sanding with progressively finer grits of around 600 to 3000 grit size is another way to remove surface imperfections and layer lines. This way you can allow more light to pass through your 3D printed objects. You still need to keep an even surface finish when sanding, as an unevenly-sanded surface will create distortion in the final print.

Polishing

Polishing the print with a mechanical or manual process gives the surface its shine and removes any tiny scratches from the sanding process. In the process of polishing your print yourself, plastic-safe material polish works best.

Epoxy Coating

Applying a thin layer of clear epoxy resin will fill the micro-gaps between printed layers and create a smooth and glossy transparent finish for your printed part. In addition to creating a smooth finish, epoxies will increase the strength of the printed part.

Steam Polishing (ABS Only)

Using steam, acetone vapors can melt the top layer of your ABS print to smooth out the layer lines and create a glassy finish. To avoid melting your print too much or damaging intricate details, it must be done very carefully.
More post-processing information, please refer: 3D printing post-processing.

Conclusion

With the help of a quality setup and although at first it may seem difficult to achieve clear and clean 3D printed precision parts using clear filaments, clear models can definitely be produced. This guide should provide you with all the needed information to successfully create your preferred styles of prints. Happy printing!

]]>
https://blog.geeetech.com/materials/the-ultimate-guide-to-clear-3d-filament/feed/ 0
The Ultimate Guide to ASA Filament for Durable and Weather-Resistant 3D Printing https://blog.geeetech.com/materials/the-ultimate-guide-to-asa-filament-for-durable-and-weather-resistant-3d-printing/ Mon, 01 Dec 2025 08:56:20 +0000 https://blog.geeetech.com/?p=13472 When you wish to 3D print your new designs, you are met with many different options of printing filament to choose from. You could go for ABS or PLA as they are quite common and affordable, but depending on your needs and how the model will be used, there are some interesting alternatives.

One of these is called ASA, which is short for acrylonitrile styrene acrylate, and this filament is amazing for use outside as well as for projects where you need a solid and robust material that can withstand a number of different environments and last a long time. So let us take a closer look at the ASA filament.

What Is ASA Filament

Many people consider ASA plastic filament to be an upgrade over ABS, as both materials share many of the same properties. Where they differ lies in the difference between the acrylate used in ASA and the butadiene used in ABS. The difference is particularly important when it comes to prints being exposed to UV light, such as from the sun, since butadiene is not really resistant to these rays.

ASA, on the other hand, is developed to be a highly resistant material, thanks to the graft polymerization process using acrylate rubber. So when it comes to UV radiation, it is tough in terms of handling weathering from the environment, and even chemical reactions. In short, ASA filament is a better option for most outdoor projects and a good replacement for prints that normally call for using ABS.

Properties of ASA in 3D Printing

We’ve briefly touched on the overall ASA filament properties when used for 3D prints. Let us take a closer look at the specifics with our detailed table, providing an easy overview, making it easy to figure out the best bed temperature when printing ASA, for instance.

PropertyDetails
Print Temperature240–270 °C
Bed Temperature80–110 °C
Tensile Strength~35–37 MPa
UV ResistanceExcellent, one of ASA’s main strengths
Weather ResistanceExcellent, ideal for outdoor use
Heat ResistanceHigh, better than PLA and ABS
WarpingModerate, similar to ABS, enclosure recommended
Print DifficultyMedium/High
Surface FinishMatte, good layer adhesion

Advantages and Disadvantages of ASA Filament

Given the properties seen above, we can discuss the pros and cons of using ASA filament in 3D models, and more easily figure out what applications and specific designs are best suited for this material.

Advantages

The main advantage over similar types, such as ABS, or even PLA and PETG, is that ASA has an exceptional resistance towards UV radiation and weathering. This not only impacts the discoloring which often happens with other materials, but it also means the overall strength of your models will stay in much better shape for a longer time.

And speaking of mechanical strength, ASA is great when looking at numbers for impact resistance and tensile strength, due to the shared similarities to ABS. You can easily use ASA in both your prototype designs as well as functional projects, without worrying whether it will last.

ASA also has a great glass transition temperature score of around 100°C, which means the material can withstand environments or exposure to high temperatures. In fact, it even outscores PLA which is known to be a great  choice in scenarios where this matters. As a result, ASA will not deform when inside a car on a hot summers day for instance, unlike many other materials.

There’s also something to mention when it comes to chemical resistance: ASA can resist degradation from many of the most typical chemicals in our natural world. Both acids and alkalis are no match for ASA, with oils and greases also having a tough time with the filament. But you can still easily sand, paint or even glue ASA materials, making post-processing easy.

Disadvantages

There are two main disadvantages when it comes to ASA in 3D printing applications. The first one is warping and shrinking, since the individual components together make for a material that can more easily warp or separate layers, thanks to the high temperature during printing with ASA. Experienced 3D printing hobbyists can remedy this by using a well-heated print bed and improve further by enclosing the printer.

The other potential issue is the ​ASA filament fumes produced when printing. ASA releases what is called styrene fumes, that not only smell strongly but can also be irritating for some people. It is recommended to print with good ventilation or filtration systems when using ASA, or at least print in a garage or shed and only briefly be present while the process takes place.

Tips of Printing ASA Filament

There are quite a few different manufacturers producing ASA 3D filament, making it difficult to provide instructions that will work well for all. Therefore, we have used Geeetech ASA 3D printer filament as our baseline, where we have spent time tweaking the values during printing to find a set of perfect ASA print settings:

PropertyBest Value
Nozzle temperature240-270 ℃
Bed temperature80-110 ℃
Cooling fan speed40-50%
Initial layer cooling speed0%
Build plate adhesionBrim & Skirt

ASA vs ABS

Many people tend to be indecisive between ASA and ABS, therefore we think it is fitting to briefly discuss the differences between ASA and ABS in 3D printing. We’ve also written a more extensive blogpost on this particular topic, which you can find here:  ASA vs. ABS: Which Is the Ultimate Value Champion in 3D Printing.

If you wish to just get the quick explanation, ASA is better for UV resistance. ABS will often turn brittle and lose color when outside, while ASA will stay stable. They both share similar properties when it comes to mechanical strength. Use ABS for indoor, functional parts where cost is a key factor. Choose ASA for any part that will be exposed to sunlight, rain, or variable outdoor conditions.

Neither ABS nor ASA is super easy to print with, especially when looking at something like PLA as an alternative. However, if you have the necessary setup both ABS and ASA can produce great results without much trouble. ABS filaments are slightly better in this aspect, as they do not warp nearly as much in general. ABS can also be a bit cheaper.

Applications

There are many different areas, hobbies and industries where ASA is a great material. Below we’ve provided a list of examples based on three different categories, but there are of course many others. And when all is said and done, it will ultimately depend on your own preferences and needs for the model and application.

Outdoor Applications

ASA printed the Mounting bracket and planter
ASA printed mounting bracket and planter
  • Planters
  • Irrigation parts
  • Tool handles
  • Exterior trim
  • License plate holders
  • Custom side mirrors
  • Electrical enclosures
  • Outdoor sensor casings
  • Mounting brackets for solar lights
  • Drone bodies
  • GoPro mounts
  • Outdoor signage

High Mechanical Strength and Heat Resistance Applications

ASA printed Dashboard components
ASA printed dashboard components
  • Functional prototypes
  • Dashboard components
  • Engine bay brackets
  • Air ducts
  • Router enclosures
  • Raspberry Pi cases
  • Power tool housings
  • Custom jigs and fixtures
  • Machine parts
  • End-use functional components

Long-Lasting Required Applications

  • Architectural models
  • Custom tools and jigs
  • Replacement appliance parts
  • Laboratory equipment housings
  • Educational models and kits
  • Museum displays and replicas
  • Outdoor furniture components
  • Industrial parts subject to wear

Conclusion

Whether you’re an engineer, a hobbyist, or a product designer, learning ASA can provide a world of opportunities to build practical and weather-resistant 3D printed models. When looking at ABS vs ASA filament, both are powerful and versatile materials, but ASA additionally provides great weather resistance.

]]>
ASA-Filament: Das Material für witterungsbeständige und langlebige 3D-Drucke https://blog.geeetech.com/deutsche-kolumne/asa-filament-das-material-fur-witterungsbestandige-und-langlebige-3d-drucke/ Wed, 26 Nov 2025 06:34:05 +0000 https://blog.geeetech.com/?p=13458 Ein 3D-Drucker Filament, das sehr witterungsbeständig ist? Ja, das gibt es!

ASA ist ein Filament material, das nicht nur gegenüber Sonne und Regen, sondern auch gegen Hitze und Chemikalien beständig ist. Andere Filamente, wie ABS, die ähnlich robust und schlagfest sind, weisen meist eine sehr geringe Witterungsbeständigkeit auf. Daher wird ASA-Filament besonders gerne im Outdoorbereich verwendet.

Was ist ASA

Acrylinitril-Styrol-Acrylat (ASA) ist ein Thermoplast, der als 3D Drucker Filament im Bereich Outdoor-Equipment immer beliebter wird. ASA wird neben dem 3D Druck auch in der Industrie eingesetzt. ASA-Material ist ein Filament, das UV-beständig ist und auch bei Hitze und Feuchtigkeit keine Schäden aufweist. Der ASA Filament ist dem ABS-Filament sehr ähnlich, wird aber in vieler Hinsicht als die bessere Version von ABS bezeichnet.
ASA hat drei Hauptbestandteile, die für Festigkeit, leichte Verarbeitung und für UV- sowie Wetterbeständigkeit sorgen.

Geeetech ASA Filament. Orange


Eigenschaften von ASA-Filament

Es gibt einige Merkmale der ASA-Filamente, die das Filament besonders beliebt für Outdoor-Anwendungen machten.

  1. Witterungsbeständigkeit: ASA-Filament ist sehr UV-beständig und wird auch bei viel Hitze und Sonne nicht spröde oder beschädigt.
  2. Temperaturbeständigkeit: ASA-Filament ist im Vergleich zu PLA 3D Filament sehr temperaturbeständig (bis zu 90-100 Grad Celsius). ASA 3D Drucke sind also perfekt für Anwendungen, die hohen Temperaturen, wie zum Beispiel Sonne, ausgesetzt sind.
  3. Mechanische Festigkeit: ASA ist zäh, hart und schlagfest und findet dadurch in vielen Bereichen Anwendung: funktionale Bauteile, Vorrichtungen, Gehäuse etc.
  4. Druckqualität: Warping ist sehr gering, Layerhaftung ist gut und beim Druck entstehen glatte Oberflächen, wenn man ASA-Filamente verwendet.
  5. Chemische Beständigkeit: beständig bei Ölen, Lösungsmitteln, Fetten, Wasser und Wetter.

Es gibt ein paar Nachteile, die wir kurz und knapp ansprechen möchten:

  • Druck ist anspruchsvoller als PLA
  • Es entstehen Gerüche und Dämpfe
  • Ohne geschlossenen Druckraum können Probleme beim Druck entstehen
  • Vergleichsweise teuer

Tipps zum Drucken mit ASA-Filament

Der Druck mit ASA-Filament bedarf bestimmter Einstellungen und Vorrichtungen. Je nach Hersteller werden bestimmte Bedingungen benötigt, um optimal drucken zu können.

Für Geeetech ASA sind folgende Einstellungen optimal:

Düsentemperatur: 240–270 °C

Betttemperatur: 80–110 °C

Lüfterdrehzahl: 40–50 %

Kühlgeschwindigkeit der ersten Schicht: 0 %

Haftung der Bauplattform: Brim & Skirt

Wird mit einem anderen ASA-Filament gedruckt, sollten die optimalen Druckeinstellungen, ASA-Temperaturen etc. mit den Empfehlungen des Herstellers abgeglichen werden.

ASA vs ABS

ABS und ASA werden oft verglichen, da einige Eigenschaften ähnlich sind, die Druckbarkeit beider sehr anspruchsvoll ist und beide sehr robust sind. Es gibt aber einige Unterschiede der Filamente.

ASA vs ABS

Eigenschaften

ABS

ASA

UV-Beständigkeit

Niedrig, vergilbt, spröde

Sehr hoch

witterungsbeständig

niedrig

hoch

Temperaturbeständig

80-90 Grad

90-100 Grad

Mechanische Festigkeit

Robust, schlagfest

Vergleichbar robust

Druckbarkeit

Anspruchsvoll, Risiko für Warping

Etwas besser, aber auch anspruchsvoll

Geruch

stark

stark

Oberflächenqualität

Matt bis glänzend, vergilbt

Glatt, farbstabil

Preis

günstig

teurer

Anwendung

Funktionsteile im Innenbereich

Outdoor-Teile

 

Neben den Eigenschaften von ASA-Filament und ABS Filament gibt es Aspekte, die sich beim ASA-Drucken vom Druck mit ABS unterscheiden.

ABS neigt beim Drucken zu Verformungen und Rissen, während ASA widerstandsfähiger gegen Umwelteinflüsse ist, jedoch eine etwas geringere Zähigkeit aufweist.

Die Drucktemperatur von ASA liegt üblicherweise 5 bis 10 °C höher als die von ABS.

Lüfterkühlung

  • ABS: Geschlossene oder extrem geringe Luftmenge
  • ASA: Ein leichter Luftzug (10–20 %) kann die Oberflächenqualität verbessern und Verformungen reduzieren.

Schlussendlich hängt die Wahl davon ab, in welchem Bereich das 3D Objekt Anwendung findet. Muss es witterungsbeständig sein, da es im Außenbereich genutzt wird, sollte ASA-Filament verwendet werden. Ist dies jedoch kein Kriterium, kann ABS verwendet werden, da dies günstiger ist.

Anwendungen

ASA-Material findet in vielen Bereichen Anwendung. ASA-Kunststoff wird in der Industrie, aber auch in anderen Sektoren verwendet.

  1. Im Outdoorbereich

Garten- und Campingzubehör, Bauteile für Terrassen, Zäune, Drohnen und Modellbauteile, Gehäuse für Wetterstationen

ein ASA-gedrucktes Gehäuse

  1. Anwendungen mit hoher mechanischer Festigkeit und Hitzebeständigkeit

Fahrzeugteile, technische Gehäuse, Werkzeuggriffe, mechanische Bauteile, Funktionsprototypen

ASA-gedruckte Drohnen

  1. Langlebige Anwendungen

Haushalts- und Industrieteile, Ersatzteile, Elektronikgehäuse

ASA-gedruckte Zahnräder

Fazit

ASA 3D Filament ist ein sehr robustes und witterungsbeständiges Filament. Auch wenn das ASA-Drucken etwas aufwendiger ist, spricht die Nutzung von diesem 3D Drucker Filament für sich, da die Eigenschaften sehr umfangreich sind. Die Anschaffungskosten sind etwas höher als die anderer 3D Drucker Filamente, aber auch hier sollte man in Betracht ziehen, dass man für einen höheren Preis ein sehr hochwertiges Filament erhält, das nicht nur ein UV beständiges Filament ist, sondern auch sehr robust ist und sehr gute Oberflächenqualitäten aufweist.

]]>
What Is Retraction in 3D Printing https://blog.geeetech.com/3d-printing-trouble-shooting-guide/what-is-retraction-in-3d-printing/ Wed, 19 Nov 2025 09:57:02 +0000 https://blog.geeetech.com/?p=13438 One of the more frustrating parts of 3D printing any design, is when you experience hairy strings or blobs of filament in the middle of an hour-long project. Oftentimes, this can not only look like a 3D printed spider web, but also mess up your entire print setting you back on both time and material cost. One solution is better retraction, which is what this article will cover. So keep reading if you want to get better prints and fewer headaches. Enjoy!

What Is Retraction?

When 3D printing items, the hot end is always under pressure with the filament being extruded from it. This is true even when the machine is not actually printing something, and simply traveling to a new point-the pressure applied can make the filament ooze.

Retraction aims to solve this problem by pulling back the filament for a small distance when the nozzle is moving, creating a vacuum which helps to stop any leaks of the melted filament. You can start dialing in the sweet spot where you eliminate strings and blobs by adjusting settings in your 3D printer.

How to Set Retraction?

You will need to use your 3D printing software in order to adjust your retraction, whether you want to enable/disable the function, or just tweak some of the parameters.

Explanation of Key Parameters

To help you navigate your specific 3D printing application, while also adjusting your 3D printing retraction settings accurately, we will explain the concept of the most common parameters. Just keep in mind, that depending on your specific program of choice, these options can be called different things and some applications might not have all of the options listed below.

Retraction Distance

The actual distance for retraction is a common parameter for most slicing applications. It simply defines how far the filament is drawn back from the extruder. You can experiment with it, but you can also look up online what works well for your model and try what other people have found as a good baseline.

Retraction Speed

Next up, we have the speed of the retraction, which is a parameter that determines just how quickly the filament is retracted. The faster this speed is set to be, the cleaner you will typically experience your prints but it will also increase the risk of snapping the filament. On the other hand, a speed setting that is too slow can ooze 3D printing material from time to time.

Minimum Travel Distance

As the name suggests, this parameter controls what the minimum acceptable distance a retraction is triggered. On short moves where the extruder will only be travelling a short distance, it can be unnecessary to retract the filament, so this prevents unnecessary retraction on very short travels. It is common to use 0.5–2.0 mm for this.

Z Hop

This parameter controls whether the 3D printer will attempt to lift the nozzle slightly when it travels. Enabling this function can prevent your nozzle from hitting your 3D printed objects when in motion, but can also increase the probability of stringing. We advise you to test out both options to see what works best for your printer.

Retraction Settings for Different Extruders

  1. Direct Drive Retraction Settings

    The Direct Drive extruder only requires a shorter distance, such as 0.5–2 mm, as it is mounted directly above the hot end. Because of this, the distance from the gear itself and down to the melt zone is short, meaning a short distance will be plenty to create the vacuum in the nozzle.
  2. Bowden Extruder Retraction Settings

    A Bowden extruder generally requires a longer retraction distance, such as 4–7 mm, due to its longer pipeline and greater elasticity. This is because the slack is the first “part” to be retracted and only then the actual pull will take place.

Retraction Settings for Different Materials

It is also important to consider what 3D printing material and 3D printer you are using. Different materials with their own unique properties require slightly different settings. So if you experience that your PLA filament causes oozing, you can use the table below as a solid base for perfectly tweaking your 3D printer and 3D printing filament for the best possible 3D printer retraction settings. We recommend that you only change one thing per print in order to validate the expected effect.

(PS: The following are just some comprehensive reference Settings, as different printers have different settings and conditions. )

MaterialRetraction Distance (Direct Drive) (mm)Retraction Distance (Bowden) (mm)Retraction Speed (mm/s)Minimum Travel Distance (mm)Z Hop (mm)
PLA0.8–2.04–635–450.5–1.00.2–0.4
PETG0.8–1.53–525–350.8–1.00.2–0.4
ABS/ASA1–24–535–450.5–1.00.2–0.4
Nyon (PA)1–24–625–350.8–1.20.3–0.6
TPU / TPE0.5–10–2 (often disabled)15–251.0–2.00.2–0.4

Typical Symptoms of Retraction Failure

Many beginners and intermediate hobbyists often have trouble identifying whether their problems are caused by retraction failure or some other aspect on the printing process. And for good reason, the topic can quickly become quite complex. So we have created a short guide to help you figure out whether your symptoms could be related to retraction failure.

Stringing / Oozing

Once you have seen this problem in your own prints, you will understand both of the words instantly. Stringing and oozing is what happens when you get long, thin lines of filament that does not follow the expected layer pattern. They can be caused by a number of different things, but relating to retraction there are typically three main reasons.

  1. Stringing can happen because the retraction distance is not great enough, which is the most common issue people have. As we mentioned earlier, if the filament is not pulled far enough back into the nozzle, the filament can leak out.
  2. Another issue is that your retraction speed is too slow. If the retraction is not quick enough, won’t relieve the pressure in the nozzle effectively to allow the molten filament to stretch and turn into long strings.
  3. While not strictly a retraction issue, you can also experience stringing if your print temperature is too high, as the filament becomes more “runny” and prone to stringing.

More solutions of string, please refer: 5 Easy Ways to Prevent 3D Print Stringing.

Blobbing / Zits on the Surface

Another common problem is what we call blobbing, which is categorized by small bumps or blobs on your printed objects. This problem tends to most commonly happen at the start and end of a perimeter, since it is related to the restart of the extrusion. The reasons include:

  1. Extruding too much after retraction is the most normal cause of this, as the printer tries to push out too much filament when beginning to print again after having travelled. Typically you will need to lower the retraction distance or the extra restart distance, depending on your slicing software.
  2. The actual speed of retraction can also be too high, as it can knock the filament into the melt zone by accident which increases the pressure and creates the blobbing effect.

Bonus tip: If you have not enabled “Coasting” or “Wiping” in your slicer, activating these features can often help remove the blobbing artefacts, as they adjust the extrusion behavior to help avoid blobs.

How to Run Retraction Tests to Find the Perfect Values

In order to find the best values, whether for your TPU retraction settings, or PLA retraction speed, you follow this step-by-step guide to dial, in order to learn how to reduce stringing 3D printing artefacts.

Retraction Test ( PLA Filament
  1. Dry filament: This is very important because too much moisture may give you a lot of stringing and poor extrusion.
  2. Print a temperature tower: You can try to print a temperature tower that gradually changes the printing temperature according to the height of an object to find an optimal value. This can help identify the best extrusion temperature for your specific filament.
  3. Use a retraction tower:  Next, you can try a specific retraction tower model to help you adjust the distance at a fixed speed, As the printer goes layer by layer, you will then need to observe the distances that produces the least amount of stringing.
  4. Fine-tune the speed: Now you know the retraction distance, you can lock that in and then work on the speed. Print another retraction tower to see what speed works best.
  5. Record the perfect values: Don’t forget to write down your best values for future prints. They can also help you when changing to another brand or even trying PLA retraction settings instead of ABS.

Conclusion

As we have seen, the ideal settings of retractions are very dependent on the 3D printer used, the type of extruder, filament material, and more specific parameters such as speed and distance. Although the tables above offer a very good starting point, the actual “sweet spot” for your particular machine is obtained through committed testing with retraction towers. By taking ownership of retraction, you can save yourself a great deal of time and filament, not to mention a countless number of headaches, and unlock your 3D printer’s full potential.

]]>
Vorbereitungen vor dem 3D-Druck – FDM https://blog.geeetech.com/deutsche-kolumne/vorbereitungen-vor-dem-3d-druck-fdm/ Fri, 31 Oct 2025 16:01:31 +0000 https://blog.geeetech.com/?p=13413 Wer zum ersten Mal mit einem 3D-Drucker arbeitet, merkt schnell, dass Vorbereitung alles ist. Ohne sie läuft wenig rund. Ein 3D-Drucker ist kein Gerät, das Papier bedruckt – er erschafft Objekte aus geschmolzenem Kunststoff, Schicht für Schicht. Gerade beim ersten 3D-Druck für Anfänger hilft es, sich etwas Zeit zu nehmen, das Material kennenzulernen und die Software richtig einzurichten. Dieser Leitfaden richtet sich an alle, die mit einem 3D-Drucker für Anfänger loslegen wollen – Und es zeigt, wie der Start mit 3D-Druckern von Geeetech oder anderen Marken Schritt für Schritt gelingt.

3D-Druck-Modelle finden

Die meisten Leute fangen mit dem 3D-Druck an, weil sie ein bestimmtes Modell verwirklichen wollen. Egal ob man ein vorgefertigtes Modell findet oder selbst eines entwirft – beide Wege sind großartige Möglichkeiten, sich zum Handeln zu motivieren.

3D-Druck-Modelle finden

Am einfachsten ist der Einstieg mit fertigen 3D-Druck-Modellen. Im Netz gibt es unzählige STL-Dateien und 3D-Drucker-Vorlagen, etwa auf Thingiverse oder Printables. Such dir kleine Objekte aus – ein Würfel, ein Schlüsselanhänger oder etwas Dekoratives. So lernst du den Ablauf kennen, ohne gleich Stunden zu investieren. Achte darauf, dass die Datei fehlerfrei ist (der sich öffnen lässt), bevor du sie in dein Programm für 3D-Drucker lädst.

Modelle selbst entwerfen

Wer lieber eigene Ideen umsetzt, kann mit einer 3D-Software arbeiten. Tinkercad ist zum Beispiel ideal für Einsteiger – leicht zu bedienen und logisch aufgebaut. Erfahrenere Nutzer greifen irgendwann zu komplexeren 3D-Druck-Programmen, die mehr Kontrolle bieten. Speichere fertige Modelle unbedingt als STL-Dateien ab. Das ist das Standardformat, das jede Slicer-Software versteht. So entsteht Stück für Stück dein digitales Fundament für den ersten 3D-Druck-Test.

Modelldateien prüfen und reparieren

Beim Herunterladen oder Entwerfen schleichen sich leicht kleine Fehler ein: offene Flächen, Risse, unvollständige Kanten. Solche Dinge fallen oft erst im Slicer auf. Zum Glück bieten viele 3D-Drucker-Programme oder kostenlose 3D-Drucker-Softwares automatische Reparaturfunktionen. Ein Klick genügt, und die Datei ist korrigiert. Gerade 3D-Drucker-Anfänger sparen sich so viel Frust – und starten mit sauberen Modellen in den Druck.

Slicing – vom Modell zum G-Code

Geeetech “Easy Print” Software

Jetzt wird aus der Idee Realität. Beim Slicen übersetzt die Software dein Modell in G-Code – das sind die Befehle, die der Drucker versteht. Hier bestimmst du folgende kleine Details:

  • Layerhöhe – sie entscheidet, wie fein dein Druck wirkt.
  • Infill – also die Füllung im Inneren, wichtig für Stabilität.
  • Wandstärke – je dicker, desto robuster das Teil.
  • Stützstrukturen – damit Überhänge nicht absacken.
  • Temperatur und Geschwindigkeit – abhängig vom Filament.

Am Anfang reicht es, mit den Standardwerten der Slicer-Software zu drucken. Diese sind meist gut abgestimmt und liefern saubere Ergebnisse. Mit der Zeit wirst du merken, wie stark kleine Änderungen das Ergebnis beeinflussen – und kannst gezielt an Qualität und Tempo feilen.

Den 3D-Drucker prüfen

Bevor du auf „Start“ klickst, lohnt sich ein kurzer Check deines 3D-Druckers. Ein paar Minuten Vorbereitung, in denen du deinen 3D-Drucker einstellen kannst, sparen oft Stunden an Nacharbeit.

Düse und Extruder

Achte darauf, dass die Düse frei ist und das Filament sauber gefördert wird. Schon kleine Rückstände können den Materialfluss stören.

Druckbett nivellieren

Eine gerade Druckfläche ist entscheidend. Ist das Bett zu hoch oder zu niedrig, haftet die erste Schicht nicht richtig. Viele Geeetech-Drucker erledigen das automatisch – ein Vorteil für Einsteiger, weil man so weniger einstellen muss.

Druckbett reinigen

Staub, Fingerabdrücke oder Fett – alles kann die Haftung stören. Wisch die Fläche kurz mit Isopropylalkohol ab, und du hast eine saubere Basis für den Druck.

Mechanik prüfen

Beweg alle Achsen einmal manuell, prüfe Riemen und Führungen. Wenn alles leicht läuft, passt es.

Filament wählen

Für den Anfang ist PLA-Filament perfekt. Es lässt sich einfach verarbeiten, riecht kaum und funktioniert schon bei niedriger Temperatur. Ein gutes 3D-Drucker-Filament von Geeetech sorgt für gleichmäßige Schichten und stabile Ergebnisse. So kannst du dich auf das Wesentliche konzentrieren: das Lernen und Ausprobieren.

Testdruck durchführen

Bevor du dich an große Projekte wagst, probiere einen 3D-Druck-Test. Beliebt sind kleine 3D-Druck-Modelle wie der „3DBenchy“ oder ein Kalibrierwürfel. So siehst du schnell, ob die Einstellungen stimmen. Bleib beim ersten Druck in der Nähe – dann kannst du eingreifen, falls sich etwas löst oder das Filament hakt. Oft reicht schon eine kleine Anpassung bei Temperatur oder Geschwindigkeit, um das Ergebnis sichtbar zu verbessern.

Fazit

Ein guter erster 3D-Druck hängt selten vom Zufall ab. Wichtiger sind Vorbereitung, Geduld und ein Gefühl für das Material. Mit sauberen STL-Dateien, einer passenden 3D-Druck-Software und einem gut eingestellten Drucker bist du auf dem richtigen Weg. Dank der präzisen FDM-Drucker und leicht bedienbaren 3D-Druck-Programme von Geeetech fällt der Einstieg deutlich leichter. Und irgendwann merkst du: aus dem ersten Testdruck ist mehr geworden – Routine, Spaß und vielleicht der Beginn eines neuen Hobbys.

]]>
Skirt, Brim und Raft im 3D Druck: Grundlagen undAnwendung https://blog.geeetech.com/deutsche-kolumne/skirt-brim-und-raft-im-3d-druck-grundlagen-undanwendung/ Mon, 27 Oct 2025 11:21:44 +0000 https://blog.geeetech.com/?p=13400 Wer im 3D Druck saubere Ergebnisse erzielen möchte, weiß: Die erste Schicht ist entscheidend. Damit sich Bauteile nicht vom Druckbett lösen und Warping im 3D Druck vermieden wird, kommen drei Methoden zum Einsatz: Skirt, Brim und Raft. Dieser Leitfaden erklärt verständlich die Unterschiede zwischen den drei Verfahren und zeigt, wie du die Druckbetthaftung verbessern und saubere erste Schichten erzielen kannst.

Skirt

Bevor die erste Schicht Ihres Modells gedruckt wird, kommt häufig der Skirt zum Einsatz.

Was ist ein Skirt?

Beim Skirt 3D Druck zieht der Drucker eine oder mehrere Linien um das Modell, ohne es zu berühren. Diese Umrandung dient zur Vorbereitung: Das PLA Filament wird auf Temperatur gebracht, eventuelle Reste in der Düse werden entfernt, und der Materialfluss lässt sich prüfen. Der Skirt hilft, Extrusion, Bettnivellierung und Haftung zu kontrollieren, bevor der eigentliche Druck startet.

Vorteile des Skirts

Ein Skirt 3D Druck bietet eine einfache Möglichkeit, den Druckvorgang zu testen, ohne Material am Objekt zu verschwenden. Die gleichmäßige Linie zeigt sofort, ob das Filament sauber fließt und gut haftet. Gerade bei PLA Filament ist der Skirt ideal, um die Düse zu reinigen und den Fluss zu stabilisieren. Bei empfindlichen Materialien wie ABS kann der Skirt höher gedruckt werden, um eine kleine Schutzwand gegen Zugluft zu bilden – das reduziert Warping im 3D Druck.

Nachteile des Skirts

Ein Skirt 3D Druck trägt nicht direkt zur Haftung bei, da er das Modell nicht mit der Bauplatte verbindet. Bei größeren oder empfindlichen Bauteilen genügt er daher oft nicht, um ein Ablösen vom Druckbett zu verhindern. Zudem wird etwas PLA Filament verbraucht, das nach dem Start keine weitere Funktion erfüllt.

Brim

Der Brim ist eine erweiterte Form des Skirts mit einer entscheidenden Funktion.

Was ist ein Brim?

Der Brim 3D Druck erweitert den Skirt um eine entscheidende Funktion: Er wird direkt mit der ersten Schicht des Modells verbunden und vergrößert so die Auflagefläche. Das Ergebnis des 3D Druck mit Brim ist eine flache, ringförmige Krempe rund um das Objekt, die die Druckbetthaftung verbessert und Warping beim 3D Druck deutlich reduziert.

Brim

Vorteile des Brims

Ein Brim 3D Druck eignet sich besonders für Materialien wie PLA und PETG, die beim Abkühlen zum Verziehen neigen. Durch die breitere Kontaktfläche haften Kanten und Ecken besser auf dem Druckbett. Gerade bei schmalen oder hohen Modellen – etwa Zahnrädern, Halterungen oder Türmen – sorgt der 3D Druck mit Brim für zusätzliche Stabilität. Er ist damit eine einfache und effiziente Lösung gegen PLA Warping, PETG Warping und Ablösungen während des Drucks.

Nachteile des Brims

Nach dem Druck muss der Brim entfernt werden. Dabei kann am Rand eine feine Linie entstehen, die leicht nachbearbeitet werden sollte. Bei sehr komplexen Geometrien ist das Entfernen etwas aufwändiger. Der Boden des Modells bleibt jedoch glatt, da der Brim nicht unter dem Objekt, sondern nur seitlich gedruckt wird.

Der Brim bildet eine Linie am Rand.
Der Brim bildet eine Linie am Rand.

Raft

Wenn sich auch ein Brim nicht als ausreichend erweist, um ein Modell sicher auf der Bauplatte zu fixieren, ist der Raft die ultimative Lösung.

Was ist ein Raft?

Ein Raft 3D Druck bezeichnet eine horizontale Gitterstruktur, die unter das Modell gedruckt wird. Das Objekt steht also auf einem sogenannten Floß, das eine stabile Basis bildet. Diese Methode wird eingesetzt, wenn Materialien schwer auf der Druckplatte haften oder zum ABS Warping neigen. Das Raft gleicht Unebenheiten aus und verhindert, dass sich das Modell beim Drucken vom Bett löst.

Raft 3d druck

Vorteile des Rafts

Ein Raft 3D Druck sorgt für maximale Haftung und kann die Druckbetthaftung verbessern. Er reduziert Schrumpfung, gleicht minimale Unebenheiten aus und verhindert zuverlässig, dass sich das Modell im 3D Druck vom Bett löst. Geeignet ist diese Methode besonders für Nylon oder ABS Filament, also Materialien, die hohe Temperaturen benötigen und stärker zum Verziehen neigen. Mit einem Raft 3D Druck schaffst du eine sichere Grundlage selbst bei großen oder technisch anspruchsvollen Teilen.

Nachteile des Rafts

Das Raft verbraucht am meisten Material und verlängert die Druckzeit. Nach dem Druck muss es entfernt werden, was bei feinen Strukturen etwas Geduld erfordert. Die Unterseite des Modells kann nach dem Entfernen leicht rau sein und sollte geglättet werden. Trotzdem bleibt das Raft die zuverlässigste Methode, um bei problematischen Materialien Warping im 3D Druck zu vermeiden.

Von links nach rechts: Die Bodenqualität von Drucken mit Skirt, Brim und Raft. Das mit Raft gedruckte Modell weist dabei die offensichtlich raueste Oberfläche auf.
Von links nach rechts: Die Bodenqualität von Drucken mit Skirt, Brim und Raft. Das mit Raft gedruckte Modell weist dabei die offensichtlich raueste Oberfläche auf.

Empfohlene Einstellungen

Mit Geeetech Druckern lassen sich alle drei Methoden präzise konfigurieren. Folgende Richtwerte bieten einen guten Ausgangspunkt:

  • Skirt 3D Druck: 2–3 Loops, Abstand zum Modell 2–6 mm
  • Brim 3D Druck: Breite 5–8 mm
  • Raft 3D Druck: Dicke 0,8–1,2 mm

Diese Werte bieten ein ausgewogenes Verhältnis zwischen Haftung, Materialverbrauch und Druckqualität. Zusätzlich sollten Druckbett-Temperatur und Nivellierung immer auf das verwendete Filament abgestimmt werden, um Warping im 3D Druck dauerhaft zu vermeiden.

Fazit

Skirt-, Brim- und Raft-Verfahren sind einfache, aber wirkungsvolle Methoden, um die Druckbetthaftung zu verbessern und Verzug zu vermeiden. Das Skirt-Verfahren dient der Vorbereitung und sorgt für einen sauberen Materialfluss, bevor der eigentliche Druck beginnt. Das Brim-Verfahren erhöht die Haftung bei Materialien wie PLA oder PETG und stabilisiert empfindliche Kanten. Das Raft-Verfahren bildet eine sichere Basis für ABS oder Nylon und minimiert Schrumpfung sowie Warping.

Mit Geeetech 3D-Druckern und den passenden Filamenten gelingen erste Schichten präzise und zuverlässig – die Grundlage für stabile, formgenaue und langlebige Druckergebnisse in der additiven Fertigung.

]]>
Ultimate Guide to 3D Printing Supports https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/ultimate-guide-to-3d-printing-supports/ Mon, 27 Oct 2025 03:23:13 +0000 https://blog.geeetech.com/?p=13387 Understanding when to use supports in 3D printing, what they do, and how they actually work can be a challenge for many beginning hobbyists. There are a number of different technical terms to learn, and then, of course, the impact on the overall result itself to consider. So this article aims to help you understand what you need to know, in order to use support structures correctly.

What Are 3D Printing Supports?

The basic idea behind 3D printing support types is, as the name suggests, to help support the 3D model. This can be an important step while the model is being printed, as some designs might not be at their maximum strength before they are finished, or they can have overhanging parts, bridges, or complex geometries that need to be kept in place during printing.

In general, 3D print supports are added to the main model itself via the 3D printing slicer, or sometimes baked into the actual 3D model itself, in such a way that it becomes possible to easily remove the supports once the print is complete. The supports can take many different shapes, but all are designed to keep the model from collapsing or creating unwanted results during printing.

Why and When Do We Need 3D Printing Supports?

Why and when supports are necessary will depend on a few different factors. Typically, any sort of overhangs, bridges, islands or deep holes in the 3D model can indicate a need for supports. Since the printer builds one layer at a time, certain geometric shapes are simply not solid or strong enough before more layers have been added, therefore needing the help of extra 3D printed support structures.

Overhangs typically need supports underneath, so there will be no drooping or falling parts during printing. Very short bridges generally can work without supports, but longer ones will need support to avoid them sagging or connecting in weird ways. Islands are shapes that are not connected at the bottom of the print, and often completely isolated from other parts, so they also need a structure to help keep them in place during printing. And finally, deep holes in models can also need support due to similar reasons as overhangs.

The Types of 3D Printing Supports

Now that we’ve discussed the types of problems with some 3D models, it is time to take a closer look at the actual support structures commonly used. Below we’ve included a few image examples to help visualize this.

Tree Supports

Tree support in 3D printing slicer
Tree support in 3D printing slicer

We start out with tree supports for 3D printing, as they are one of the most common types for many different models and shapes. They tend to branch out from the base of the printing bed, in order to then slightly connect with any overhangs or other problem areas, to support them in an effective way that also makes them easy to remove. Tree support 3D printing can be quite material efficient compared to some other supports, so that you don’t waste much filament this way.

Grid / Line Supports

Another form of 3D printing support structure is typically referred to as grid supports, although some people call them line supports, as they look like a grid when viewed in 2D. They are great for providing extra strength and stability to a number of different challenging shapes, but are especially used for large and flat shapes, as well as overhanging surfaces that could droop or warp without the support. However, they can be more difficult to remove and they can also use up more filament.

Soluble Supports (PVA, HIPS)

The last method we will discuss today is soluble supports, and as the name suggests, they make it possible to remove the unwanted material in a much cleaner way by dissolving their connection points. PVA is one such material used that can be dissolved with simple water, making it a great 3D filament to use for supports. HIPS is another commonly used material for this method, dissolved with limonene. The downside is that you will need a dual-extrusion printer to use this method, as you need the normal filament in one extruder and the soluble filament in the other.

How to Set 3D Printing Supports

Now that you know a little more about what supports are, and when they are used, it is time to look at how you can implement them. Below, we have described some 3D print support settings you can try out for reference, but remember that they can vary depending on the slicing software and materials, so use them flexibly as needed. We used Bambu Studio and Geeetech PLA filament as our reference point.

Support Placement

We recommend that you choose the option to print supports “On build plate only”, as it will help prevent the support from falling off or becoming unstable. Adjustments may be needed depending on the model however, so keep an eye out at the start of printing.

Support Density

Choosing the density of support structures is an act of balance. The denser the support is, the stronger and more stable it will be. However, it will also be more difficult to remove from your 3D printed designs, and also use up more filament. We recommend starting with around 30% as that is the default. 20% can also work in many cases, so this is the area to adjust from.

Support Z Distance

Top Z distance in 3D printing slicer
Top Z distance in 3D printing slicer

Choosing the Top Z distance is another factor that plays into your overall support structure, as a larger Z distance makes supports easier to remove but leaves a rougher surface. Start with the default distance and fine-tune for your model.

Support Top Distance

Top interface spacing in 3D printing slicer
Top interface spacing in 3D printing slicer

Smaller top interface spacing improves surface quality but makes removal harder. We recommend that you use 0 mm for large interfaces, and then try 0.5 mm for smaller interfaces. Again, this might need some adjustment to get perfect.

Support Overhang Angle

Choosing the angle for support overhangs is another tricky thing. On the one hand, smaller angles generate more supports, while larger angles reduce supports. However, the best setting finds a balance in order to make removal easy.

The default setting is 40° and we recommend to adjust based on your results, so if if the model bottom sags or strings, you should decrease the angle. And if you find that too many supports form, it can be effective to increase the angle.

Support/Object XY Distance

As for the XY distance for supports and objects, the default setting is 0.5 mm, which generally speaking is a good balance.

Soluble Support Settings

Soluble supports can be set very small or even completely tuned down to 0 mm interface distance, but generally, you will want a little distance. If you find that supports fall off easily, then increase density or reduce interface distance.

we also get the option to adjust wall thickness. This is especially important for soluble support structures, as a single layer can have issues with solvent seeping through when you remove the support. In this case, we recommend at least 2-3 layers for a more robust approach.

How to Remove Supports from 3D Prints

The last section for today will briefly cover how you can remove your support structures once they have been printed together with your desired model.

Normal Supports

Before you begin working on your printed design, you should always allow the model to cool down to an appropriate working temperature to avoid any accidents. However, supports are easier to remove when slightly warm, so timing this step right can be helpful as completely cooled off objects are more rigid.

We recommend that you start by removing the supports from the outside in, and also work your way from large to small structures. One technique that many people find useful, is to twist gently or shake up and down. Many times, the supports can simply snap off, but you might need a small tool to help you cut out tough parts.

Remove the support
Remove the support

Soluble Supports

For soluble support structures, the process is different. It will depend on your chosen filament in particular, so remember to read the instructions for your specific material. Below, we have outlined a rough step-by-step guide for both PVA and HIPS, based on our own experience:

PVA:

  1. Soak in warm water (30–40°C) for several hours.
  2. Stir regularly or use a soft brush to speed up dissolution.
  3. Rinse thoroughly with clean water and let dry.

HIPS:

  1. Soak in limonene solution and seal the container to prevent evaporation or odor.
  2. Dissolution usually completes in 1–6 hours.
  3. Remove with pliers, then rinse in fresh limonene to clean residuals.
  4. Allow solvent to fully evaporate in a well-ventilated area before handling.

When removing soluble supports, especially HIPS, you should work in a decently ventilated area and wear solvent-resistant gloves and goggles. Avoid skin contact with limonene for optimal safety and wash it off fast if any contact happens.

Conclusion

Hopefully we have helped you understand the key points for the basic principles behind 3D printing supports, different settings and how to remove your structures once completed. For new hobbyists it can take some time getting used to, and dialing in on the perfect settings for your specific printer, and each model can also have slightly different optimal settings.

We’ve also covered how to make supports easier to remove, and touched on the difference between normal and soluble 3D printer support types. So remember, practice makes perfect, and always keep an eye on your printer from time to time, to avoid wasted hours if the support structure or model is not working as intended. Happy printing!

]]>
Slicing Introduction: What Is Slicing in 3D Printing? https://blog.geeetech.com/3d-printer/3d-printing-software/slicing-introduction-what-is-slicing-in-3d-printing/ Tue, 30 Sep 2025 08:13:00 +0000 https://blog.geeetech.com/?p=13374 The concept of slicing 3D models can be a bit confusing for newcomers to the wonderful hobby of 3D printing. But it is actually quite simple, so don’t worry. In this article, we will explain all you need to know, so that you can slice your 3D models correctly every time. Enjoy!

What Is Slicing?

3D slicing
3D slicing

Whenever you have a 3D design that you want to print, you will need to prepare the digital format for your printer. Instead of just having the complete “block” of your model, it is necessary to slice the model into smaller segments, the individual horizontal layers that the printer will actually produce.

This formatting is called slicing, and is therefore an important part of any FDM 3D printing process, as well as many other types of 3D printers. Think of each layer as representing a cross-section of the model that the printer builds sequentially, and that the slicing is responsible for actually keeping track of the layers and their position.

In simple terms, the slicing is “translate” the 3D model into a series of instruction files that the printer can understand and execute layer by layer.

Why Is Slicing Important in 3D Printing?

Since you will need to convert your 3D design into simple instructions that your 3D printer can understand, slicing can be considered one of the most important parts of the entire process. You may have a beautiful 3D model you created yourself, or picked off the internet, but if it has no slicing data you can not print it.

The actual data that is produced during this procedure influences numerous important factors, including printing quality, accuracy, as well as the overall result of your finished 3D printed product. It does this by controlling the trajectory the printer moves, the quantity of the substance that is extruded, as well as the adhesion that each layer is joined together. A good 3D slicer and appropriate 3D printing programs assure the best settings for speed, quality, as well as the utilization of the building material.

The Processes of Slicing

While the underlying technology of slicing might seem complex, it is actually relatively simple to slice any model with the right software. Oftentimes you can even slice your 3D prints with just a few clicks, so it does not need to be overly complicated, although you will often get better results by changing some parameters based on the specific print, the material you want to use and your actual printer.

Step 1: Import Model

Before you can slice anything, you will first of all need your 3D model as a digital file. There are different formats for this, but common ones include .STL or .OBJ files. These are the most used filetypes that you will typically get when you download a file on any of the larger sites.

Next, you will also need your slicing software. There are many different options to choose from here, so we will cover this part in more detail below. Once you have loaded your 3D model file into the slicer, you can then configure various settings depending on the desired results.

Step 2: Configure Settings

This is the most critical step. You’ll adjust a host of parameters based on your printer, filament, and desired print quality. If you download from another creator, they often include the important parameters you need to change, alongside the values they recommend.

  1. Layer height: The thickness of each printed layer. Smaller layers give smoother surfaces but take longer to print.
  2. Infill density and pattern: The internal structure of the part, which governs its strength and weight.
  3. Wall thickness: The thickness of the outer shell.
  4. Support structures: Automatically generated, removable scaffolds that prevent overhangs from collapsing during printing.
  5. Print temperature and speed.

The last of the most common parameters is the print temperature and speed. This is generally decided by the material used, so if you use TPU filament, ABS or some others 3D printer filament, you might change these settings in particular.

Step 3: Slice the Model

One you have set all your parameters as you want, you can then click “Slice model” in order to begin the automated process. Depending on the size of your model, how complex the shape is, and the various parameter values, this can take a few minutes on the shorter end or up to 20 minutes on slower devices with a large and complex model.

This is because it performs the “virtual slicing” on the model, along the Z-axis and generates precise printing paths for each layer that your 3D printer will then follow once it becomes time to actually print the model.

virtual slicing
virtual slicing

Step 4: Generate G-code

Most software applications will then save all these slices into a new file, known as G-code, which then not only stores all your virtual slice paths, but also saves information that the printer will use to know what temperature the hotbed should be, how much extrusion is needed and so on.

Step 5: Send to Printer

The last step before printing, is getting your G-code uploaded to your 3D printer. On your model and preference, you will usually be able to select doing this through a standard SD card, a direct USB, Bluetooth or through your WiFi or LAN networking. Once your 3D printer has received the G-code, you can then begin printing.

Introduction to Slicers

As we mentioned above, there are different types of 3D printing software that you can use to slice your model. In general, they all convert 3D models into G-code instructions for the printer, so it becomes a matter of preference which type of software you end up choosing.

Simplify3D, Ultimaker Cura, PrusaSlicer

Among the most popular used slicers, you would see names like Simplify3D, Ultimaker Cura, and PrusaSlicer. They are either branded applications that come packaged with your specific 3D printer, or massively used third-party applications created by enthusiasts. Many of these programs have free and paid options, and they typically support a wide range of printers and materials.

Geeetech

3d printing software free: Geeetech
3d printing software: Geeetech

Looking back, the last 3D printing software we developed was Easy Print, and it’s still being used today.
Now, one new and noteworthy 3D printing software is the one we have launched and named Geeetech, which comes with a set of interesting features for everyone wanting to print easily and quickly. Currently, we only open the connection to Geeetech M1S. The software comes with some models that can be printed directly. More functions and models will be opened up in the future, such as easily slicing.

It will continually get new functions and slicing features, and we look forward to it becoming one of the best slicers for 3D printing for Geeetech users and anyone else interested in great results.

3d printing software: Geeetech
3d printing software: Geeetech

Conclusion

To sum it up, slicing is an extremely important part of any 3D printing process. It is important that you therefore understand why you need to slice your models, but also learn how to tweak the parameter values to get the best results. This can be tricky with some applications, so we recommend you try different types of 3D printing software and 3D slicer tools, in order to see what gives you accurate and high-quality prints.

In particular, we hope you will explore the new Geeetech 3D printing software to experience reliable performance, an intuitive slicer app, and optimized printing results. Have fun printing!

]]>