3D printing trouble shooting guide | Geeetech https://blog.geeetech.com Get Your Ideas Into Life Wed, 19 Nov 2025 09:57:05 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.3 https://blog.geeetech.com/wp-content/uploads/2025/06/cropped-blog-logo-32x32.png 3D printing trouble shooting guide | Geeetech https://blog.geeetech.com 32 32 What Is Retraction in 3D Printing https://blog.geeetech.com/3d-printing-trouble-shooting-guide/what-is-retraction-in-3d-printing/ https://blog.geeetech.com/3d-printing-trouble-shooting-guide/what-is-retraction-in-3d-printing/#respond Wed, 19 Nov 2025 09:57:02 +0000 https://blog.geeetech.com/?p=13438 One of the more frustrating parts of 3D printing any design, is when you experience hairy strings or blobs of filament in the middle of an hour-long project. Oftentimes, this can not only look like a 3D printed spider web, but also mess up your entire print setting you back on both time and material cost. One solution is better retraction, which is what this article will cover. So keep reading if you want to get better prints and fewer headaches. Enjoy!

What Is Retraction?

When 3D printing items, the hot end is always under pressure with the filament being extruded from it. This is true even when the machine is not actually printing something, and simply traveling to a new point-the pressure applied can make the filament ooze.

Retraction aims to solve this problem by pulling back the filament for a small distance when the nozzle is moving, creating a vacuum which helps to stop any leaks of the melted filament. You can start dialing in the sweet spot where you eliminate strings and blobs by adjusting settings in your 3D printer.

How to Set Retraction?

You will need to use your 3D printing software in order to adjust your retraction, whether you want to enable/disable the function, or just tweak some of the parameters.

Explanation of Key Parameters

To help you navigate your specific 3D printing application, while also adjusting your 3D printing retraction settings accurately, we will explain the concept of the most common parameters. Just keep in mind, that depending on your specific program of choice, these options can be called different things and some applications might not have all of the options listed below.

Retraction Distance

The actual distance for retraction is a common parameter for most slicing applications. It simply defines how far the filament is drawn back from the extruder. You can experiment with it, but you can also look up online what works well for your model and try what other people have found as a good baseline.

Retraction Speed

Next up, we have the speed of the retraction, which is a parameter that determines just how quickly the filament is retracted. The faster this speed is set to be, the cleaner you will typically experience your prints but it will also increase the risk of snapping the filament. On the other hand, a speed setting that is too slow can ooze 3D printing material from time to time.

Minimum Travel Distance

As the name suggests, this parameter controls what the minimum acceptable distance a retraction is triggered. On short moves where the extruder will only be travelling a short distance, it can be unnecessary to retract the filament, so this prevents unnecessary retraction on very short travels. It is common to use 0.5–2.0 mm for this.

Z Hop

This parameter controls whether the 3D printer will attempt to lift the nozzle slightly when it travels. Enabling this function can prevent your nozzle from hitting your 3D printed objects when in motion, but can also increase the probability of stringing. We advise you to test out both options to see what works best for your printer.

Retraction Settings for Different Extruders

  1. Direct Drive Retraction Settings

    The Direct Drive extruder only requires a shorter distance, such as 0.5–2 mm, as it is mounted directly above the hot end. Because of this, the distance from the gear itself and down to the melt zone is short, meaning a short distance will be plenty to create the vacuum in the nozzle.
  2. Bowden Extruder Retraction Settings

    A Bowden extruder generally requires a longer retraction distance, such as 4–7 mm, due to its longer pipeline and greater elasticity. This is because the slack is the first “part” to be retracted and only then the actual pull will take place.

Retraction Settings for Different Materials

It is also important to consider what 3D printing material and 3D printer you are using. Different materials with their own unique properties require slightly different settings. So if you experience that your PLA filament causes oozing, you can use the table below as a solid base for perfectly tweaking your 3D printer and 3D printing filament for the best possible 3D printer retraction settings. We recommend that you only change one thing per print in order to validate the expected effect.

(PS: The following are just some comprehensive reference Settings, as different printers have different settings and conditions. )

MaterialRetraction Distance (Direct Drive) (mm)Retraction Distance (Bowden) (mm)Retraction Speed (mm/s)Minimum Travel Distance (mm)Z Hop (mm)
PLA0.8–2.04–635–450.5–1.00.2–0.4
PETG0.8–1.53–525–350.8–1.00.2–0.4
ABS/ASA1–24–535–450.5–1.00.2–0.4
Nyon (PA)1–24–625–350.8–1.20.3–0.6
TPU / TPE0.5–10–2 (often disabled)15–251.0–2.00.2–0.4

Typical Symptoms of Retraction Failure

Many beginners and intermediate hobbyists often have trouble identifying whether their problems are caused by retraction failure or some other aspect on the printing process. And for good reason, the topic can quickly become quite complex. So we have created a short guide to help you figure out whether your symptoms could be related to retraction failure.

Stringing / Oozing

Once you have seen this problem in your own prints, you will understand both of the words instantly. Stringing and oozing is what happens when you get long, thin lines of filament that does not follow the expected layer pattern. They can be caused by a number of different things, but relating to retraction there are typically three main reasons.

  1. Stringing can happen because the retraction distance is not great enough, which is the most common issue people have. As we mentioned earlier, if the filament is not pulled far enough back into the nozzle, the filament can leak out.
  2. Another issue is that your retraction speed is too slow. If the retraction is not quick enough, won’t relieve the pressure in the nozzle effectively to allow the molten filament to stretch and turn into long strings.
  3. While not strictly a retraction issue, you can also experience stringing if your print temperature is too high, as the filament becomes more “runny” and prone to stringing.

More solutions of string, please refer: 5 Easy Ways to Prevent 3D Print Stringing.

Blobbing / Zits on the Surface

Another common problem is what we call blobbing, which is categorized by small bumps or blobs on your printed objects. This problem tends to most commonly happen at the start and end of a perimeter, since it is related to the restart of the extrusion. The reasons include:

  1. Extruding too much after retraction is the most normal cause of this, as the printer tries to push out too much filament when beginning to print again after having travelled. Typically you will need to lower the retraction distance or the extra restart distance, depending on your slicing software.
  2. The actual speed of retraction can also be too high, as it can knock the filament into the melt zone by accident which increases the pressure and creates the blobbing effect.

Bonus tip: If you have not enabled “Coasting” or “Wiping” in your slicer, activating these features can often help remove the blobbing artefacts, as they adjust the extrusion behavior to help avoid blobs.

How to Run Retraction Tests to Find the Perfect Values

In order to find the best values, whether for your TPU retraction settings, or PLA retraction speed, you follow this step-by-step guide to dial, in order to learn how to reduce stringing 3D printing artefacts.

Retraction Test ( PLA Filament
  1. Dry filament: This is very important because too much moisture may give you a lot of stringing and poor extrusion.
  2. Print a temperature tower: You can try to print a temperature tower that gradually changes the printing temperature according to the height of an object to find an optimal value. This can help identify the best extrusion temperature for your specific filament.
  3. Use a retraction tower:  Next, you can try a specific retraction tower model to help you adjust the distance at a fixed speed, As the printer goes layer by layer, you will then need to observe the distances that produces the least amount of stringing.
  4. Fine-tune the speed: Now you know the retraction distance, you can lock that in and then work on the speed. Print another retraction tower to see what speed works best.
  5. Record the perfect values: Don’t forget to write down your best values for future prints. They can also help you when changing to another brand or even trying PLA retraction settings instead of ABS.

Conclusion

As we have seen, the ideal settings of retractions are very dependent on the 3D printer used, the type of extruder, filament material, and more specific parameters such as speed and distance. Although the tables above offer a very good starting point, the actual “sweet spot” for your particular machine is obtained through committed testing with retraction towers. By taking ownership of retraction, you can save yourself a great deal of time and filament, not to mention a countless number of headaches, and unlock your 3D printer’s full potential.

]]>
https://blog.geeetech.com/3d-printing-trouble-shooting-guide/what-is-retraction-in-3d-printing/feed/ 0
Ultimate Guide to 3D Printing Supports https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/ultimate-guide-to-3d-printing-supports/ https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/ultimate-guide-to-3d-printing-supports/#respond Mon, 27 Oct 2025 03:23:13 +0000 https://blog.geeetech.com/?p=13387 Understanding when to use supports in 3D printing, what they do, and how they actually work can be a challenge for many beginning hobbyists. There are a number of different technical terms to learn, and then, of course, the impact on the overall result itself to consider. So this article aims to help you understand what you need to know, in order to use support structures correctly.

What Are 3D Printing Supports?

The basic idea behind 3D printing support types is, as the name suggests, to help support the 3D model. This can be an important step while the model is being printed, as some designs might not be at their maximum strength before they are finished, or they can have overhanging parts, bridges, or complex geometries that need to be kept in place during printing.

In general, 3D print supports are added to the main model itself via the 3D printing slicer, or sometimes baked into the actual 3D model itself, in such a way that it becomes possible to easily remove the supports once the print is complete. The supports can take many different shapes, but all are designed to keep the model from collapsing or creating unwanted results during printing.

Why and When Do We Need 3D Printing Supports?

Why and when supports are necessary will depend on a few different factors. Typically, any sort of overhangs, bridges, islands or deep holes in the 3D model can indicate a need for supports. Since the printer builds one layer at a time, certain geometric shapes are simply not solid or strong enough before more layers have been added, therefore needing the help of extra 3D printed support structures.

Overhangs typically need supports underneath, so there will be no drooping or falling parts during printing. Very short bridges generally can work without supports, but longer ones will need support to avoid them sagging or connecting in weird ways. Islands are shapes that are not connected at the bottom of the print, and often completely isolated from other parts, so they also need a structure to help keep them in place during printing. And finally, deep holes in models can also need support due to similar reasons as overhangs.

The Types of 3D Printing Supports

Now that we’ve discussed the types of problems with some 3D models, it is time to take a closer look at the actual support structures commonly used. Below we’ve included a few image examples to help visualize this.

Tree Supports

Tree support in 3D printing slicer
Tree support in 3D printing slicer

We start out with tree supports for 3D printing, as they are one of the most common types for many different models and shapes. They tend to branch out from the base of the printing bed, in order to then slightly connect with any overhangs or other problem areas, to support them in an effective way that also makes them easy to remove. Tree support 3D printing can be quite material efficient compared to some other supports, so that you don’t waste much filament this way.

Grid / Line Supports

Another form of 3D printing support structure is typically referred to as grid supports, although some people call them line supports, as they look like a grid when viewed in 2D. They are great for providing extra strength and stability to a number of different challenging shapes, but are especially used for large and flat shapes, as well as overhanging surfaces that could droop or warp without the support. However, they can be more difficult to remove and they can also use up more filament.

Soluble Supports (PVA, HIPS)

The last method we will discuss today is soluble supports, and as the name suggests, they make it possible to remove the unwanted material in a much cleaner way by dissolving their connection points. PVA is one such material used that can be dissolved with simple water, making it a great 3D filament to use for supports. HIPS is another commonly used material for this method, dissolved with limonene. The downside is that you will need a dual-extrusion printer to use this method, as you need the normal filament in one extruder and the soluble filament in the other.

How to Set 3D Printing Supports

Now that you know a little more about what supports are, and when they are used, it is time to look at how you can implement them. Below, we have described some 3D print support settings you can try out for reference, but remember that they can vary depending on the slicing software and materials, so use them flexibly as needed. We used Bambu Studio and Geeetech PLA filament as our reference point.

Support Placement

We recommend that you choose the option to print supports “On build plate only”, as it will help prevent the support from falling off or becoming unstable. Adjustments may be needed depending on the model however, so keep an eye out at the start of printing.

Support Density

Choosing the density of support structures is an act of balance. The denser the support is, the stronger and more stable it will be. However, it will also be more difficult to remove from your 3D printed designs, and also use up more filament. We recommend starting with around 30% as that is the default. 20% can also work in many cases, so this is the area to adjust from.

Support Z Distance

Top Z distance in 3D printing slicer
Top Z distance in 3D printing slicer

Choosing the Top Z distance is another factor that plays into your overall support structure, as a larger Z distance makes supports easier to remove but leaves a rougher surface. Start with the default distance and fine-tune for your model.

Support Top Distance

Top interface spacing in 3D printing slicer
Top interface spacing in 3D printing slicer

Smaller top interface spacing improves surface quality but makes removal harder. We recommend that you use 0 mm for large interfaces, and then try 0.5 mm for smaller interfaces. Again, this might need some adjustment to get perfect.

Support Overhang Angle

Choosing the angle for support overhangs is another tricky thing. On the one hand, smaller angles generate more supports, while larger angles reduce supports. However, the best setting finds a balance in order to make removal easy.

The default setting is 40° and we recommend to adjust based on your results, so if if the model bottom sags or strings, you should decrease the angle. And if you find that too many supports form, it can be effective to increase the angle.

Support/Object XY Distance

As for the XY distance for supports and objects, the default setting is 0.5 mm, which generally speaking is a good balance.

Soluble Support Settings

Soluble supports can be set very small or even completely tuned down to 0 mm interface distance, but generally, you will want a little distance. If you find that supports fall off easily, then increase density or reduce interface distance.

we also get the option to adjust wall thickness. This is especially important for soluble support structures, as a single layer can have issues with solvent seeping through when you remove the support. In this case, we recommend at least 2-3 layers for a more robust approach.

How to Remove Supports from 3D Prints

The last section for today will briefly cover how you can remove your support structures once they have been printed together with your desired model.

Normal Supports

Before you begin working on your printed design, you should always allow the model to cool down to an appropriate working temperature to avoid any accidents. However, supports are easier to remove when slightly warm, so timing this step right can be helpful as completely cooled off objects are more rigid.

We recommend that you start by removing the supports from the outside in, and also work your way from large to small structures. One technique that many people find useful, is to twist gently or shake up and down. Many times, the supports can simply snap off, but you might need a small tool to help you cut out tough parts.

Remove the support
Remove the support

Soluble Supports

For soluble support structures, the process is different. It will depend on your chosen filament in particular, so remember to read the instructions for your specific material. Below, we have outlined a rough step-by-step guide for both PVA and HIPS, based on our own experience:

PVA:

  1. Soak in warm water (30–40°C) for several hours.
  2. Stir regularly or use a soft brush to speed up dissolution.
  3. Rinse thoroughly with clean water and let dry.

HIPS:

  1. Soak in limonene solution and seal the container to prevent evaporation or odor.
  2. Dissolution usually completes in 1–6 hours.
  3. Remove with pliers, then rinse in fresh limonene to clean residuals.
  4. Allow solvent to fully evaporate in a well-ventilated area before handling.

When removing soluble supports, especially HIPS, you should work in a decently ventilated area and wear solvent-resistant gloves and goggles. Avoid skin contact with limonene for optimal safety and wash it off fast if any contact happens.

Conclusion

Hopefully we have helped you understand the key points for the basic principles behind 3D printing supports, different settings and how to remove your structures once completed. For new hobbyists it can take some time getting used to, and dialing in on the perfect settings for your specific printer, and each model can also have slightly different optimal settings.

We’ve also covered how to make supports easier to remove, and touched on the difference between normal and soluble 3D printer support types. So remember, practice makes perfect, and always keep an eye on your printer from time to time, to avoid wasted hours if the support structure or model is not working as intended. Happy printing!

]]>
https://blog.geeetech.com/3d-printing-trouble-shooting-guide/tutorials/ultimate-guide-to-3d-printing-supports/feed/ 0
4 häufige Fehler beim PLA-3D-Druck und ihre Lösungen https://blog.geeetech.com/3d-printing-trouble-shooting-guide/4-haufige-fehler-beim-pla-3d-druck-und-ihre-losungen/ Wed, 30 Jul 2025 10:48:16 +0000 https://blog.geeetech.com/?p=13274 Wer gerne mit PLA druckt, weiß, wie vielseitig das Material verwendet werden kann und wie einfach es zu drucken ist. Es gibt aber manchmal auch diese kleinen „nervigen“ Unannehmlichkeiten, die den Druck irgendwie nicht so rund laufen lassen.
Wir haben 4 häufige Fehler beim PLA-3D-Druck und Lösungsansätze hier zusammengefasst, sodass ihr diese 3D Druckprobleme mit optimierten 3D-Druck-Einstellungen bestmöglich umgehen könnt.

1. Elefantenfuß

Verwendet man das PLA 3D Filament, um Objekte zu drucken, kann es zu einem sogenannten Elefantenfuß kommen. Die erste Schicht des Drucks verformt sich dabei so stark, dass die Schicht kollabiert und „ausbeult“. Diese Ausbeulung ähnelt dann der Form eines Elefantenfußes. Daher stammen auch der Vergleich und die Namensgebung. 

3D Drucker Elefantenfuß
3D Druck Elefantenfuß

Grund für die Verformung der ersten Schicht ist eine zu hohe Druckbetttemperatur. Diese muss sehr gering sein, denn die Wärmebeständigkeit des Filaments PLA liegt bei 60 °C. Wenn also die Druckbetttemperatur sehr hoch ist, kommt es zu einem Kantenkollaps, der den sogenannten Elefantenfuß verursacht.

Was sollte man also tun?

Begrenze die Heizbetttemperatur, und zwar auf eine Temperatur, die das PLA 3D Druck Filament nicht beeinflusst. Empfohlen wird eine Temperatur zwischen 50°C und 55°C, denn dadurch ist eine gute Haftung garantiert, das Risiko für einen Elefantenfuß beim PLA-Filament jedoch minimiert. Die PLA-Betttemperatur kann also dein 3D Druck Objekt retten!
Auch sollte man den Z-Offset leicht erhöhen, da dies eine Verformung der ersten Schicht minimiert. Ist die Düse zu nah am Druckbett, so kann es passieren, dass das Filament zusammengedrückt wird und „aufquillt“, was auch zu Verformungen und einem Elefantenfuß führen kann. Ein optimaler Abstand ermöglicht eine stabile erste Schicht auf dem Druckbett.

Ein allgemeiner Tipp ist auch, das erste Layer mit einer geringeren Geschwindigkeit zu drucken, denn eine niedrige Geschwindigkeit bedeutet eine höhere Präzision des Drucks!

Speziell bei Slicern wird oft automatisch ein erhöhter Druck bei der ersten Schicht eingestellt, sodass eine bessere Haftung auf dem Druckbett erreicht wird. Dies birgt aber das Risiko für einen Elefantenfuß. Es gibt hier spezielle Einstellungen (Elephant Foot Compensation), bei denen die erste Schicht leicht nach innen gezogen wird, um eine Auswölbung und Verformung des PLA-Filaments vorzubeugen.

Durch das 3D Drucker Einstellen, speziell die Temperaturanpassung der Druckplatte, können 3D Druck Fehler wie der Elefantenfuß mit dem PLA-Filament minimiert und verhindert werden.

Kurz und knapp:
Verformte, ausgebeulte erste Schicht – sieht aus wie ein Elefantenfuß.

  • Ursache:
    Zu hohe Druckbetttemperatur (über 60 °C) oder zu geringer Düsenabstand (Z-Offset).
  • Lösungsansätze
    • Heizbett auf 50–55 °C begrenzen
    Z-Offset leicht erhöhen, um Quetschen zu vermeiden
    Erste Schicht langsamer drucken für mehr Präzision
    Slicer-Einstellungen prüfen: „Elephant Foot Compensation“ aktivieren

Wir haben bereits detailliertere PLA-Druckeinstellungen vorgestellt – zur Ihrer Orientierung.

2. Feuchtes PLA-Filament

Verwendet man ein feuchtes PLA 3D Filament als 3d drucken material, gibt es einige Herausforderungen, die die Druckqualität und das Endergebnis stark beeinträchtigen können.

Folgende Probleme können auftreten:

(1) Blasen und Knacken beim Drucken

Am Hotend verdampft das Wasser im PLA 3D Filament und es entstehen Miniexplosionen, die als Knacken zu hören sind.

(2) Unregelmäßiger 3D Druck Extrusionsfluss

Durch die Feuchtigkeit im 3D Drucker Filament kann es zu Fäden und Tropfen kommen, da das PLA-Filament nicht regelmäßig ausgeführt werden kann.

Feuchtes PLA-Filament verursacht Fädenbildung während des Drucks
Feuchtes PLA-Filament verursacht Fädenbildung während des Drucks

(3) Schlechte Layerhaftung

Feuchtigkeit im PLA 3D Filament kann dazu führen, dass die Schichten nicht gut aneinanderhaften.

(4) Beeinträchtigte Oberflächenqualität

Es kann zu rauen und matten Oberflächen kommen, wenn sich Feuchtigkeit im 3D Drucker Filament befindet. Dies beeinträchtigt die 3D Druck Ergebnisse.

(5) Stabilität ist beeinträchtigt

Durch Feuchtigkeit und damit entstehende Blasen und Unreinheiten wird das gedruckte Objekt weniger stabil und neigt dazu, schnell zu brechen oder zu reißen.

(6) Hotend verstopft

Im Hotend können durch die Feuchtigkeit Rückstände und Ablagerungen entstehen. Diese können dazu führen, dass das Hotend verstopft.

Wenn man Probleme beim PLA-Druck hat, sollte man nicht immer davon ausgehen, dass der Grund falsche Druckeinstellungen oder Probleme der Extrusion sind. Warum?
PLA-Filament ist hygroskopisch. Es nimmt langsam und konstant Feuchtigkeit auf. Sprich, die Feuchtigkeit im Filament ist kaum sichtbar. Bei 3D Drucker Filamenten (wie Nylon und TPU) , die stark hygroskopisch sind, kann es zu Blasen oder sichtliche Feuchtigkeit im Filament kommen.

Was sollte man also tun?

Es gibt einige Lösungsansätze, die die oben genannten Herausforderungen umgehen bzw. beheben.

Möchtest du sicher gehen, dass dein Filament keine Feuchtigkeit mehr enthält, solltest du es vor dem Druck trocknen. Du kannst dabei entweder einen Filamenttrockner, einen Ofen mit Umluft oder einen Food-Dehydrator nutzen. Hierbei sollte das 3D Druck Filament 4-6 Stunden bei 45-55°C getrocknet werden.

Auch solltest du das Filament immer in einer luftdichten Verpackung aufbewahren. Zusätzlich solltest du Trockenmittel in deine Filament-Box legen, sodass jegliche Feuchtigkeit von diesen aufgenommen wird.

Es gibt sogenannte Drybox-Setups, die es ermöglichen, das Filament während des Drucks trocken aufzubewahren, sodass auch hier keine Feuchtigkeit aufgenommen werden kann.

Überprüfe regelmäßig, dass dein PLA-Filament trocken gelagert wird, sodass du 3D-Druck-Fehler umgehen kannst und gute 3D Druck-Ergebnisse erzielen kannst.

Kurz und knapp:

Typische Probleme:

  • Blasen und Knacken: Verdampfende Feuchtigkeit verursacht Mini-Explosionen im Hotend
  • Fäden und Tropfen: Unregelmäßiger Materialfluss durch Feuchtigkeit
  • Schlechte Layerhaftung: Schichten verbinden sich nicht sauber
  • Raue, matte Oberfläche: Beeinträchtigt Optik und Qualität
  • Geringere Stabilität: Blasen im Material machen das Bauteil brüchig
  • Verstopftes Hotend: Rückstände durch verdampfendes Wasser

Lösungen:

  • Filament vor dem Druck trocknen (4–6 Stunden bei 45–55 °C im Ofen, Filamenttrockner oder Dehydrator)
  • Trocken lagern: Luftdichte Boxen mit Trockenmittel verwenden
  • Drybox-Setup verwenden: Filament bleibt auch während des Drucks trocken
  • Regelmäßig überprüfen, ob das Filament trocken ist

Klicken Sie hier, um mehr über die Lagerung und das Trocknen von Filament zu erfahren.

3. Unsachgemäße Verwendung des Ventilators

Für den PLA-3D-Druck ist es notwendig, einen Ventilator zu nutzen. Und zwar nicht irgendwie; Denn bei einer unsachgemäßen Verwendung kann sich das gedruckte Objekt verziehen, Details gehen verloren und die Struktur verändert sich. Das PLA-Filament verlangt eine kontinuierliche Kühlung, um gute Druckergebnisse zu erzielen.

Materialaufbau auf der Top-Schicht durch unzureichende Kühlung
Materialaufbau auf der Top-Schicht durch unzureichende Kühlung

 
Was sollte man also tun?

Ab der zweiten Schicht solltest du den Ventilator auf 100% einstellen und während des ganzen Drucks anlassen, sodass keine 3D-Druck-Fehler auftreten.

4. Support schwierig zu entfernen

Komplexere 3D-Drucke benötigen eine 3D-Druck-Stützstruktur, denn sonst könnte das Objekt während des Drucks in sich zusammenfallen oder sich verformen. Nach Fertigstellung wird die Support-Struktur vom Hauptobjekt entfernt. Verwendet man das PLA-Filament, kann es dazu führen, dass die Stützstruktur schwer zu entfernen ist und eventuell das Objekt beschädigt wird. Der Grund dafür liegt in der spröden und starren Beschaffenheit bei dem PLA Filament. Bricht man also die Stützstruktur ab, kann es sein, dass auch das gedruckte Objekt an der Verbindungsstelle bricht.

Bruch des Druckobjekts beim Entfernen der Stützstruktur
Bruch des Druckobjekts beim Entfernen der Stützstruktur


Was sollte man also tun?

Eine Möglichkeit, dieses Problem zu umgehen, ist die Verwendung einer abnehmbaren Stützstruktur-Interface. Das bedeutet, dass die verbindende Schicht zwischen Objekt und Stützstruktur mit anderen Materialien oder besonderen 3D Drucker Einstellungen gedruckt wird (geringere Füllung, geringere Haftung, dünnere Linienführung). Dies ermöglicht, dass die Supportstruktur einfach entfernt werden kann, ohne dass das Druckobjekt beschädigt wird oder unsaubere Oberflächen entstehen.

Eine weitere Möglichkeit ist die Reduzierung der kompletten Stützstrukturdichte, sodass man die Stützstruktur einfach entfernen kann.

Fazit

Vier häufige 3D Druckprobleme mit PLA 3D Filament sind Elefantenfüße, feuchtes 3D Druckerfilament, fehlerhafte Verwendung vom Ventilator und Probleme bei der Entfernung von Stützstrukturen am Objekt.
Es gibt für all diese Probleme Lösungsansätze, die durch Anpassung von Druckeinstellungen, akkurate Verwendung von Ventilatoren und die richtige Lagerung von 3D Druck Filament, die oben genannten 3D Druck Fehler beheben bzw. umgehen können.
Bei der Anwendung der gezeigten Lösungsansätze können 3D-Druckprobleme umgangen werden und tolle 3D-Druckergebnisse erzielt werden.

]]>
PETG Printing Troubleshooting https://blog.geeetech.com/3d-printing-trouble-shooting-guide/petg-printing-troubleshooting/ Sat, 07 Jun 2025 07:55:54 +0000 https://blog.geeetech.com/?p=13042 PETG is a strong and slightly flexible 3D printer filament that is easier to print with, compared to other 3D printing filaments like ABS. That doesn’t make it immune to issues, though. This article covers how to troubleshoot typical PETG printing issues such as stringing, first layer adhesion, weak interlayer adhesion, nozzle clogging, and rough surfaces. Enjoy!

PETG Stringing

PETG Stringing

Stringing is a very common problem when printing with 3D printing filament PETG, and is defined as a thin filament that stretches across the gap of the print. Stringing occurs when the molten layer of PETG seeps out of the nozzle while the nozzle moves non-printing directional moves. This can happen for a number of reasons, such as incorrect retraction settings, excessive heat, or the surrounding environment.

Reasons and Solutions

  1. High Printing Temperature: PETG filament has good flow at higher temperatures, with the downside of creating excessive oozing.
    Solution: Lower the PETG printing temperature to 220–240°C, depending on your filament brand and printer. Test in 5°C increments to find the sweet spot where extrusion is smooth without stringing.
  2. Improper Retraction Settings: Insufficient retraction distance or slow retraction speed fails to pull molten plastic back into the nozzle, causing it to leak during travel.
    Solution: Set retraction distance to 5–8 mm and retraction speed to 40–50 mm/s. Adjust these in small increments in your slicer (e.g., Cura, PrusaSlicer) and test with a stringing test model.
  3. Slow Nozzle Travel Speed: If the nozzle moves too slowly over open spaces, molten PETG can ooze, forming strings.
    Solution: Increase travel speed to 100–200 mm/s or higher in non-print areas. Enable “Z Hop” (Lift Z) in your slicer to raise the nozzle slightly (0.2–0.5 mm) during travel, preventing dragging. Note that Z Hop may slightly increase print time.
  4. Wet Filament: The moisture absorbed by PETG will become steam during the printing process and lead to increased oozing and stringing.
    Solution: Dry the filament with a filament dryer or in the oven at 60–70°c for 4–6 hours. Store the filament in a sealed container with a desiccant so it doesn’t reabsorb moisture.
  5. Poor Nozzle Condition: A nozzle that is worn out, or dirty can cause inconsistent extrusion and leaking.
    Solution: You can clean the nozzle by a wire brush and/or perform a cold pull with cleaning filament. You may want to replace the nozzle if it is worn out or damaged.

The Adhesion Problem of the First Layer

The first layer of any successful PETG 3D printer filament operation is the most important to get right. It is especially important with PETG that you achieve good bed adhesion. If the first layer doesn’t stick to the build plate well, you risk warping and curling as well as the print possibly falling completely off the build plate and destroying the print early on in the process.

PETG first layer issue
PETG first layer issue

Reasons and Solutions

  1. Incorrect Nozzle Height (Z-Offset): If the nozzle is too low, the filament may be squished too much or even scraped off the bed. If it’s too high, the filament won’t properly adhere to the print surface and may lead to under-extrusion in the first layer.
    Solution: To fix this, you can just re-level the bed and properly calibrate Z-offset to squish the first layer just so it is forming smooth and gap-free lines. Use a first-layer test print to fine-tune as well.
  2. Unsatisfactory Bed Temperature: A cold bed reduces adhesion, while an overly hot one can cause “elephant’s foot” (bulging at the base).
    Solution: Set the PETG bed temperature to 80–90°C, depending on the filament and bed type. Test in 5°C increments to avoid over- or under-adhesion.
  3. Dirty Bed: Dust, oils, or leftover filament prevent proper adhesion.
    Solution: Clean the build surface with 70%+ isopropyl alcohol or warm soapy water before every print.
  4. Cooling Fan On Too Early: Early cooling causes rapid shrinkage, preventing proper bonding to the bed.
    Solution: Disable the cooling fan for at least the first 2–5 layers to allow the filament to stay optimal temp and stick properly.
  5. Unsuitable Printing Environment: Drafts or low ambient temperatures lead to uneven cooling and warping.
    Solution: Use an enclosure or draft shield to maintain a stable environment around 20–25°C.
  6. Poor First Layer Contact Area: Small or sharp-edged prints may not grip the bed well enough.
    Solution: Add a skirt to prime the nozzle, a brim (5–10 mm) to increase surface contact, or mouse ears on corners to prevent lifting.
  7. Incompatible or Worn Bed Surface: Some surfaces may be too smooth or degraded over time.
    Solution: Apply a thin layer of glue stick, hairspray, or bed adhesive on glass. Replace worn PEI sheets or rough them up slightly with fine sandpaper (e.g., 2000 grit).

Poor Interlayer Adhesion

Interlayer adhesion determines the structural strength of a printed object, and PETG’s potential for strong layer bonding can be undermined by incorrect settings or poor filament handling. When layers fail to fuse properly, parts may split along layer lines under minimal stress. This not only affects functionality but also makes prints more susceptible to mechanical failure.

PETG Poor Interlayer Adhesion
PETG Poor Interlayer Adhesion

Reasons and Solutions

  1. Low Print Temperature: Insufficient heat prevents proper melting and bonding between layers.
    Solution: Raise the PETG temperature by 5–10°C within the 220–240°C range to improve flow and bonding. Test incrementally to avoid stringing.
  2. Excessive Cooling: High fan speeds or early cooling solidify PETG too quickly, reducing layer fusion.
    Solution: Disable the fan for the first 2–5 layers, then use only 10–30% PETG fan speed for overhangs or bridges. Small models may require slightly more cooling (up to 50%) for fine details.
  3. Fast Print Speed: Rapid printing limits the time for layers to bond.
    Solution: Set outer wall/perimeter speed to 40–60 mm/s to allow sufficient bonding time. Adjust infill speed to 60–80 mm/s for efficiency without sacrificing quality.
  4. Under-Extrusion: Incorrect flow or line width settings result in insufficient filament deposition.
    Solution: Verify E-steps (extruder steps per mm) using a calibration test. Adjust the flow rate in the slicer to 95–98%, or slightly higher (103–105%) if the under-extrusion issue persists.

Nozzle Clogging

For those of us printing with PETG, nozzle clogs or jams can be a very common and frustrating problem. It can cause under-extrusion, skipped layers, and even complete print failure. PETG is a fairly sticky material in its molten state and can adhere to the nozzle when it’s printing at temp, therefore, when the filament begins to cool in the cooler area of the nozzle, it can lead to partial or total stops.

Nozzle Clogging

Reasons and Solutions

  1. High Print Temperature: Excessive heat causes the filament to carbonize with an incorrect PETG nozzle temp.
    Solution: Reduce the print temperature to 220–240°C to minimize carbonization.
  2. Low Z-Offset: The nozzle dragging on the print creates backpressure, leading to clogs.
    Solution: Ensure the nozzle is at the correct height to avoid dragging on the print. Use a first layer test to confirm.
  3. Filament Residue: Molten PETG sticks to the nozzle and burns, forming blockages.
    Solution: Inspect the nozzle before and after prints. Clean with a wire brush while hot or perform a cold pull to remove residue. Replace the nozzle if clogs persist.

Rough Surface

A rough or inconsistent surface finish not only looks bad, it can also signal more problems with extrusion or not the best filament quality. Blobs, zits, or stringy textures on outer layers can mainly be contributed to over-extrusion, wet filament or a variable temperature.

Rough surface

Reasons and Solutions

  1. Over-Extrusion: Too much filament flow or the nozzle being too close to the bed creates blobs, zits, or uneven layers.
    Solution: Make sure your extruder is calibrated by verifying E-steps and setting the slicer flow rate between 95-98%. Print a single wall cube to make sure this is accurate.
  2. Low Z-Offset: An overly low nozzle height causes filament to be excessively squished, leading to bulging layers and artifacts.
    Solution: Raise the Z-offset slightly to allow the nozzle to lay down smooth, even lines without excess pressure.
  3. Wet Filament: PETG filament can sometimes absorb some moisture from the air that can lead to bubbles, uneven flow, and defects in the surfaces or contours of prints.
    Solution: Try drying PETG in the oven or using a filament dryer to remove the moisture. Also store your filament in an airtight container with silica gel when not in use.

Conclusion

When troubleshooting PETG printing, you must come up with a systematic methodology. There are issues you may want to consider: stringing, adhesion and interlayer bonding, clogs, and rough surfaces. These issues will require several adjustments to temperature, retraction, cooling, and bed prep. With proper adjustment and testing, your PETG prints will print consistently and with excellent quality.

]]>
Alles Wichtige zum TPU-Filament https://blog.geeetech.com/deutsche-kolumne/alles-wichtige-zum-tpu-filament/ Tue, 17 Dec 2024 08:15:24 +0000 https://www.geeetech.com/blog/?p=12364 Ob als Anfänger oder Profi, im Bereich des 3D-Druckens ist immer die Frage, welches Filament am besten ist! Brauche ich ein flexibles Filament, das eventuell Herausforderungen beim Druck mit sich bringt oder nutze ich klassisches Plastik für 3D-Drucker wie zum Beispiel PLA oder PETG?

Du weißt, wovon wir sprechen? Dann bist du hier genau richtig, denn wir wollen dir ein 3D-Drucker Filament vorstellen, das im Besten Fall all deine Fragen beantwortet. Es gibt seit Beginn des 3D-Drucks viele Filamente, die genutzt werden; immer beliebter wird in den letzten Jahren das TPU Filament.

Will man TPU drucken, dann gibt es einige Aspekte, die man beachten sollte, um einen perfekten TPU 3D Druck zu erhalten. Genau darauf möchten wir, neben grundsätzlichen Aspekten zum TPU 3D Filament, in diesem Artikel einen Blick werfen. Wir geben wichtige Tipps zu TPU Druckeinstellungen, zum Geeetech Filament und was 3D Druck Filamente wie das TPU Material so besonders machen. Neben den TPU Filament Eigenschaften werden wir auch Probleme und deren Lösungen zum TPU 3d Druck für euch übersichtlich zusammenfassen.

Was ist TPU?

Es gibt verschiedene 3D Druck Filamente, die verschiedene Eigenschaften, Vor- und Nachteile haben und je nach Produkt besser oder schlechter sind. Weißt du, welche Zwecke das Endprodukt hat, dann solltest du dir überlegen, welches Filament am sinnvollsten ist.

TPU Filament steht für thermoplastic polyurethane filament. Es handelt sich dabei um ein Plastik für 3D Drucker, das immer mehr an Beliebtheit zunimmt, denn es ist flexibel, elastisch und strapazierfähig. TPU Material wird als 3D Drucker Filament vor allem beim FDM Drucker genutzt.

Die Entwicklungsgeschichte des TPU-Filaments

Seinen Ursprung hat das TPU Filament in der chemischen Industrie. In den 1930er Jahren wurden Polyurethane erstmals synthetisiert. In den 50er Jahren wurde dann das TPU Material entwickelt. Die besondere Elastizität, Beständigkeit und Abriebfestigkeit machten das TPU Filament zu einem beliebten Material in der Automobilindustrie, der Medizintechnik und spielte eine große Rolle bei der Schuhherstellung.
Erst in den 2000ern wurde TPU als 3D Drucker Filament populär. Bis dahin wurden nur starre Filamente genutzt. Somit war der TPU Druck revolutionär, denn plötzlich konnten dehnbare, flexible Objekte gedruckt werden. 2011 begannen erste Unternehmen, das TPU Filament speziell für 3D Drucke herzustellen. Die aktuelle Materialentwicklung ermöglicht es bereits verschiedene Elastizitäten und Härtegrade herzustellen, wodurch mithilfe des TPU Drucks vielseitige Produkte hergestellt werden können.

Die Eigenschaften des TPU-Filaments

Das TPU Filament hat Eigenschaften, die andere 3D-Druck Filamente nicht aufweisen, und ist deswegen eines der beliebtesten Plastiken für 3D Drucker. Das Geeetech Filament und allgemein das TPU Material sind ein flexibles Filament. Das TPU Filament verfügt über eine hohe Abriebfestigkeit und findet daher Anwendung in Objekten, die einer hohen mechanischen Belastung ausgesetzt sind. Außerdem ist das TPU Filament sehr chemikalienbeständig (Öle, Fette, Lösungsmittel). Weitere TPU Filament Eigenschaften sind hohe Zugfestigkeit, Temperaturbeständigkeit und Stoßdämpfung sowie Geräuschdämpfung und die Vielseitigkeit (verschiedene Härtegrade).

Die Merkmale von TPU gedruckten Modellen

Die Merkmale von TPU gedruckten Modellen überschneiden sich zum Teil mit den Eigenschaften des TPU Materials. Druckt man mit dem Geeetech Filament oder einem anderen TPU Filament, entstehen Objekte, die flexibel und dehnbar sind. Das können zum Beispiel Handyhüllen oder Gummidichtungen sein. Je nach Wunsch können sehr weiche, aber auch härtere Objekte gedruckt werden, denn das Plastik für 3d Drucker ist in verschiedenen Härtegraden erhältlich. Ein TPU 3D Druck ermöglicht Objekte, die wetterbeständig sind, hohe Beständigkeit aufweisen und glatte Oberflächen und gutes Finishing ermöglichen.

Besonders ist, dass Objekte des TPU 3D Drucks eine hohe materielle Belastbarkeit, aber auch eine hohe chemische Beständigkeit aufweisen, sodass sowohl mechanische Reibung als auch Öle dem Objekt keinen bzw. kaum Schaden zufügen können.

Tipps für TPU Print Einstellungen

Um das TPU Filament optimal zu drucken, solltet ihr besondere TPU Druckeinstellungen nutzen. Das Geeetech Filament kann unter schlechter TPU Filament Temperatur zum Beispiel Probleme wie verstopfte Düsen oder unsaubere Drucke hervorrufen. Das TPU Material hat sehr gute Eigenschaften, ist aber als Plastik für 3D Drucker nicht das einfachste Material zum Drucken. Hier findest du die wichtigsten TPU Druckeinstellungen, um das TPU Material optimal zu drucken:

  • Drucktemperatur: 190-250 Grad Celsius (Temperatur hängt von der Marke ab, eine mittlere Temperatur sollte am Anfang gewählt werden)
  • Druckbetttemperatur: 40-60 Grad Celsius (niedrige Temperatur kann Haftung verbessern)
  • Druckgeschwindigkeit: 20-30 mm/s (da TPU weich ist, empfiehlt sich eine niedrige Geschwindigkeit)
  • Düsendurchmesser: 0,4-0,8 mm
  • Schichthöhe: 0,1-0,3 mm
  • Retraktionsabstand: >1mm (Retraktionsfunktion kann auch ausgeschalten werden)
  • Retraktionsgeschwindigkeit: 20-40 mm/s
  • Flow Rate: 0,95-1,05

Weitere hilfreiche Tipps:

  • Nutze einen direkt angetriebenen Extruder-> bessere Ergebnisse
  • Um die Haftung zu verbessern, solltest du ein PEI board nutzen und mit blue tape befestigen.
  • Bei der ersten Schicht solltest du die Geschwindigkeit niedrig einstellen und die Stärke erhöhen.
  • Nutze einen Fan, um zu kühlen (low air volume: 30%-50%). Die einzelnen Schichten verbinden sich so besser.
  • Deine Printing Platform sollte immer sauber und glatt sein. Um bessere Ergebnisse zu erzielen, kannst du eine magnetische Druck-Unterlage nutzen.
  • Soll das Objekt flexibler sein, muss die Fülldichte reduziert werden (10-20%) und die Wandstärke sowie Schichthöhe angepasst werden.

Häufige TPU Druck Probleme und Lösungen

Das TPU Material kann beim TPU 3D Druck Probleme hervorrufen. Die meisten Probleme können durch eine optimierte Druckeinstellung gelöst werden.

Düse verstopft

Eine Düsenverstopfung kommt relativ häufig vor, denn das Geeetech Filament, auch andere TPU Filamente sind sehr elastisch, verdrehen oder verformen sich und stauen sich unkontrolliert in der Düse. Grund dafür kann eine zu schnelle Druckgeschwindigkeit sein, zu hohe Retraktionseinstellung, unregelmäßige Filamentführung oder die Düse selbst.
Folgende Lösungsansätze solltest du in Betracht ziehen:

  1. Druckgeschwindigkeit verringern
  2. Retraktion anpassen (minimiere die Retraktion)
  3. Stelle eine gute Filamentführung sicher
  4. Reinige die Düse
  5. Bei Verschleiß sollte eine neue Düse verwendet werden

Blasen entstehen in TPU gedruckten Objekten

Das Plastik für 3D Drucker zieht schnell Feuchtigkeit aus der Umgebung und ist sehr empfindlich bei falschen Druckeinstellungen. So kann die Oberflächenqualität beeinträchtigt werden. Wenn die Extrusion nicht gleichmäßig verläuft, die Druckgeschwindigkeit und Temperatur zu hoch sind, entstehen schnell Blasen am Objekt.
Folgendes sollte gemacht werden:

  1. Drucktemperatur anpassen
  2. Druckgeschwindigkeit anpassen
  3. Filament bei hoher Feuchtigkeit trocknen

Fehldrucke wegen Feuchtigkeit

Ein großes Problem beim TPU Filament ist die Feuchtigkeit. Das TPU Material ist hygroskopisch, was bedeutet, dass es Feuchtigkeit aus der Umgebung aufnimmt. Der Drucker kann blockiert werden, Blasen entstehen oder Material wird unregelmäßig aufgetragen.

Grundsätzlich solltest du dein TPU Filament trocken in einem luftdichten Behälter aufbewahren, um das TPU Material vor Feuchtigkeit zu schützen. Ist es bereits feucht, solltest du das TPU Material gründlich trocknen.

Klicke hier, um weitere Anleitungen zur Lagerung und Trocknung von Filamenten zu erfahren.

Anwendungen von TPU

Das TPU Material findet man heute in vielen Bereichen wieder. Bekannt ist es als 3D Drucker Filament.
Neben der hohen Beliebtheit als 3D Drucker Filament ist TPU aber auch in Schuhsohlen, Sportartikeln, der Automobilindustrie, sowie in medizinischen Geräten wiederzufinden. TPU ist ein beliebtes Verpackungs- und Isoliermaterial für Kabel und ist als Vibrations- und Geräuschdämpfung in Gebrauch. Auch in der Raumfahrtindustrie oder ganz einfach in Haushaltsgegenständen wird das TPU Filament aufgrund seiner Eigenschaften gerne verwendet.

Fazit

Das beliebte 3D Drucker Filament ist ein Alleskönner. Nicht viele Filamente können so weitreichende Eigenschaften vorweisen wie das Geeetech Filament. Das 3D Drucker Filament ist seit den 50er Jahren im Bereich der Autoindustrie, als 3D Drucker Filament und in medizinischen Geräten wiederzufinden. Es ist elastisch, flexibel, strapazierfähig und sowohl chemisch als auch physisch belastbar.

Das TPU Filament ist aufgrund seiner Eigenschaften als 3D Drucker Filament sehr beliebt. Die Herausforderung ist jedoch, dass das TPU 3D printer Filament komplex zum Drucken sein kann. Es können Probleme wie Blasen, Unreinheiten und Feuchtigkeit auftreten.
Durch eine optimierte Druckeinstellung können aber diese Probleme zumeist gelöst werden und vielseitig nutzbare Objekte, mit vielschichtigen Eigenschaften können gedruckt werden.

Das Temperatur Turm Model (Temperature tower model) ist eine hervorragende Methode, um die optimale 3D Druck Temperatur und die Geschwindigkeit zu ermitteln. Ganz wichtig ist auch, dass du dein TPU Filament zu jedem Zeitpunkt sicher aufbewahrst.
Berücksichtigst du diese Aspekte, können Probleme beim Druck vermieden werden und der Spaß beim 3D Drucken kann beginnen.

]]>
New Multi-color 3D Printers Mizar M is Officially Launched,  With Double Hotend Group Modules https://blog.geeetech.com/news/new-multi-color-3d-printers-mizar-m-is-officially-launched-with-double-hotend-group-modules/ Fri, 04 Nov 2022 02:54:30 +0000 https://www.geeetech.com/blog/?p=11269 On October 28th CST, Geeetech released a new generation mixing color 3D printer, Mizar M. Compared to Geeetech’s previous multi-color 3D printers, Mizar M is equipped with two print head modules – “Separated Color Module” and “Gradient Color Module”, corresponding to the two printing modes of “Separate Mode” and “Gradient Mode” respectively, allowing 3D printer enthusiasts to enjoy multi-color printing. At present, the official website has started pre-orders, and the price is only $399.

What makes Mizar M different?

Separate Mode VS Gradient Mode

Traditional monochrome printing has been difficult to meet the creative needs of 3D printing enthusiasts, and mixed-color printing has become the future trend. Mizar M 3D Printer has two print head modules, “Separated Color Module” and “Gradient Color Module”, and is designed for quick replacement in structure. After replacing the print head module and inserting the hot end connector, the system will intelligently identify the print head module and enter the corresponding print mode.

Unique Separated Color Module

Compared with the Gradient Color Module, the Separated Color Module of Mizar M can realize printing a single color without mixing another color when printing models with two color filaments. Besides, it gains a faster printing speed, which can better meet the needs of two-color printing.

Patented gradient color technology

The Geeetech R&D team has optimized and upgraded the Gradient Color Module of Mizar M. Compared with Geeetech’s first-generation multi-color 3D printer, the Mizar M Gradient Color Module has redesigned the color mixing flow channel and a structure to prevent the reverse flow of melting filament. The filament is more uniformly mixed in the hot end. This special design effectively solves the problem of uneven color mixing, and the hot end blocked due to the reverse flow of the melting filament. At present, the gradient color structure has applied for a patent.

Mizar M with a printing size of 255 x 255 x 260mm, supporting auto-leveling and manual leveling, is equipped with a fixed hotbed and 32-bit silent motherboard. Responding to two printing modes, it comes with double UI interaction systems. The machine comes with a dual-drive gear extruder and double Z-axis ensuring high printing quality. At the same time, Mizar M is designed with a belt adjustment kit, nozzle LED light, filament detector break resuming capability, etc.

Here is the unboxing and assembly video of Mizar M for your references:

If you want to know more info about Mizar M, please check Geeetech official website.

]]>
5 Easy Ways to Prevent 3D Print Stringing https://blog.geeetech.com/3d-printing-trouble-shooting-guide/5-easy-ways-to-prevent-3d-print-stringing/ Thu, 08 Oct 2020 07:06:06 +0000 http://www.geeetech.com/blog/?p=10470 Stringing is one of the common issues we would meet during printing. Here are 5 solutions that you can refer to.

Without a doubt, you can’t bear some minor flaws in the surface of a 3d printing model, let alone “String”. You complained that this printer is such trash contrary to expectations. At that time, you may get mad but it will eventually end up in a mess. So firstly you need to calm down. Take a close look at what is the exact problem, make it clear how it happened, and how we can solve the problem. Let’s dive in.

What’s the Problem?

3D Printing Stringing exists when small plastic strings are left behind on a 3D-printed model. This is usually due to plastic leaking from the nozzle as the extruder moves to a new position.

Finished print affected by stringing

How to fix this

In this article, we bring 5 solutions that can be commonly used on all the major 3D printers.

1. Enable Retraction

Enabling retraction is the most ordinary way to fight against 3D printer stringing. Enabling retraction means that when the extruder has to pass through a gap, the filament is retracted a little bit by the feeder. Once the extruder reaches the next position, the filament is pushed out and the print continues again from the nozzle. If the retraction setting is turned on and you’re still experiencing 3D printer stringing, you may then need to go into the details of the retraction settings:

  • Retraction distance

The most important retraction setting is the retraction distance. This determines how much plastic is pulled out of the nozzle. Generally speaking, the more plastic that is retracted from the nozzle, the less likely the nozzle is to seep out as it moves. Most direct-drive extruders only require a retraction distance of 0.5-2.0mm. If you run into stringing with your prints, try increasing the retraction distance by 1mm and test again to see if the performance improves.

  • Retraction speed

The next retraction setting that you should check is the retraction speed. This determines how fast the filament is retracted from the nozzle. If the retraction is too slow, the plastic will slowly leak out of the nozzle and may begin to leak before the extruder moves to its new position. If you retract too quickly, the filament may separate from the hot plastic inside the nozzle, or the rapid movement of the drive gear may even grind away pieces of your filament. There is usually an optimal retraction point between 1200-6000 mm/min (20-100 mm/s).

If standard retraction isn’t doing the trick, you can try to reduce the minimum travel. This is usually the quickest solution to fix stringing issues. Drop the value by 0.5mm until the stringing has stopped completely.

2. Set the Right Temperature

The 3d printer extruder temperature is the next most common cause for stringing. If the temperature is too high, the plastic inside the nozzle will become less sticky and more likely to leak out. However, if the temperature is too low, the plastic will be one kind of solid and difficult to extrude from the nozzle. If you thought you had the right retraction settings but still have these problems, you can try to decrease your extruder temperature by 5-10 degrees. This will greatly improve the quality of your printing.

3. Movement Speed

Moreover, increasing the movement speed of your machine can also reduce the time it takes for the extruder to leak as it moves between parts. The X/Y Axis Movement Speed represents the side-to-side travel speed and is frequently directly related to the range of time your extruder spends moving over open air. As long as your machine can move at higher speeds, increasing this setting may reduce stringing between parts.

4. Thoroughly Clean the Nozzle Before Printing

When you use a printer for a long time, the filament can leave a thin residue layer in 3d printer nozzle. This thin layer can cause 3D printer stringing as filament strands will try to stick to the surface of your printed part. To avoid such a problem, ensure your nozzle is thoroughly cleaned before print.

5. Keep Your Filaments Moisture-Free

PLA, which absorbs more water than ABS, is the main culprit. The water turns to steam when the plastic is heated up, and it can mix with the plastic to increase the likelihood that it will seep out during non-printing movements.

Therefore, it is very important to store the filament properly, especially if you live in a humid environment. For more guidance, check out the previous blog here:How to store filament? 

]]>
3D Printer Filament Storage – How Is It Done Properly? https://blog.geeetech.com/3d-printing-application/3d-printer-filament-storage-how-is-it-done-properly/ Thu, 24 Sep 2020 08:26:40 +0000 http://www.geeetech.com/blog/?p=10446 If you have moisture and mold in your home, you’re more likely to have respiratory problems, allergies, and weak immune system. When you know the cause of the moisture, you can take steps to limit the moisture in the air.

Likewise, humidity is a natural enemy of filaments. Some materials have no humidity problem. Others, such as PVA or nylon, are very hygroscopic and absorb water after a very short time. The wet filament sizzles and is easy to recognize during printing, and the results are terrible. Therefore, it is particularly important to store filament spools carefully and correctly.

A comparison of dry vs wet filament. Source: Matterhackers

Why Water Damages Thermoplastics

All plastics are polymers or copolymers. you’ll see that the long molecular strands that make up them are woven together when you look at polymers or copolymers under a high-intensity microscope,That means there’s plenty of space between and around the strands.Thererfore, most polymers and copolymers are hygroscopic.Some filament materials, such as Nylon, are very sensitive to water .If  they absorb only a little water, they can cause problems when printing.

How To Keep Your 3D Printer Filament Dry

Storing your filament in an airtight container with a desiccant is the easiest way to settle this issue.Filament dry boxes work well, but they can be bulky.

when it comes to airtight,most people think of plastic containers and bags.For the most part, these are good short-term solutions.

This is the cheapest way to store filament spools. Source: Paige Russell / Instructables

Nevertheless, over time, plastic containers and bags become slightly permeable.This means that the longer your printing materials stay in plastic bags, the more water they absorb, .especially when you live in a humid climate. .If you use a clear bag or box, UV light will also reduce the strength of the filament over time.

Using high-quality Mylar bags or bags made of similar materials is a better solution is to store your thermoplastic.Obviously, there is a layer of metal between two layers of plastic.This metal layer protects your printing material from any water vapor that permeates the plastic.So that your printing material produces a satisfactory result.

Mylar bags protect your printing material from water vapor.Source: rigid.ink
Desiccant packets keep the humidity in the containers to a minimum. Source: Amazon

How You Know Your Printing Material Has Absorbed Water

Before printing, there are two simple ways to determine if your material is absorbing water.First, you can measure the diameter of the material itself.when a polymer absorbs water, it begins to grow in size.If the diameter of the filament increases by 10 percent or more, it most likely absorbs water.

Another way to determine whether a filament absorbs water is to extrude a small amount of filament before printing.We’ve all probably been there: sitting by a fire, listening to its crackle.This is because the water in the wood is changed into steam when heated.The same phenomenon occurs when you extrude thermoplastic that has absorbed water.The heat from the print end causes the water in the plastic to expand and escape.You can hear hissing or popping and also see bubbles.

How to Dry Out Filament

If your filament is wet, you must dry it out before using it to print.Why not use an oven?

Once the oven it up to temperature, place the spooled material inside.Source: Amazon

In the first place, check out the glass transition temperature for the filament that you are going to dry.You need to be sure that you keep your oven temperature below the transition temperature. In a general way , about 60-70C is just about right for most materials, except may be a bit hot for lower temp materials like PLA. Always keep in mind how hot your oven runs and only use electric ovens.

You should also be aware, even if the Glass Transition temp is very high, for a material like Nylon or Polycarbonate – the spool your filament is wound on is likely made from an ABS which will soften at lower temperatures than the filament. 

How to dry PLA filament

You ought to be more careful when you dry PLA filament on account that 70C will be too hot. We recommend at the very lowest temp your oven will go around 40C. Even at this temp your PLA will soften, so drying PLA in the oven won’t always give you the results you’re after. It’s a small reminder as to the importance of keeping excellent PLA storage. 

Once the oven it up to temperature, place the spooled material inside and leave it there for four to six hours. If you have a convection oven, this drying time may be shortened since the circulated air removes more moisture from the material more quickly.You can also ‘recharge’ the desiccant this way too, placing it in the oven over a low heat. 

Once the time is up, remove the material from the oven, allow it to cool and place it into a water impermeable container or bag along with desiccants. Make sure that the container or bag is completely sealed.

Any material that you have oven-dried is slightly more brittle than normal.Remember,Handle the material with care.Only then can you achieve the superior results with your properly dry print material.

]]>
How to Prevent Blobs?Tips to Get Your Girl Back https://blog.geeetech.com/3d-printing-application/3d-printing-design/how-to-prevent-blobstips-to-get-your-girl-back/ Fri, 18 Sep 2020 10:09:02 +0000 http://www.geeetech.com/blog/?p=10414 I dated a girl to count stars over the lake last night.She is so beautiful and a perfectionist to her fingertips.A few months ago,I followed her instagram account and found that she loves Pokemon toys very much.So I decided to make a Charizard with a 3D printer and gave her as a gift.She looked at this cute stuff carefully but soon she gave it back to me.I couldn’t think of any reason why she should do that .Did she want to break off our friendship or she like something else?NO way!The design of her mobile phone case is a Pokemon!Oh,Wait!What is this?It is a pesky blob right on the surface of my 3D printed toy.Damn the blob!I left a bad impression on her.

You must be disappointed when seeing blobs marring our 3D prints.,which is commonly called“zits” ,can occur due to the frequent start and stop of extruder as it moves around.These blobs on your model represent the position where the extruder began to print a part of the outer shell and then returned to the same position after printing the perimeter.Without leaving a mark, it’s hard to connect two pieces of plastic , but here we figure out two tips to keep the blobs from occuring on the surface of your print.

Tip 1:add a negative extra restart distance

Finding out where they are occurring is vital to reduce blobs.You should make sure if blobs happen at the beginning of the perimeter,or as the perimeter finishes printing.If it is the former, the extruder is most likely priming too much plastic.To solve this problem,you can attempt to adjust your retraction settings,add a negative extra restart distance. For example, if your retraction distance is 2.0mm, the extra restart distance decreases by 0.4mm, and each time the extruder stops, the filament will be retracted 2.0mm .But when it starts again, 1.6mm of the filament will be pushed back into the nozzle.You ought to keep tweaking this number until there are no blobs.

Tip 2:turn the “coasting” setting off 

If you find that the blob is happening as the extruder finishes printing a perimeter,it is posssible that the built-up pressure inside the extruder nozzle pushes out more plastic than expected. In this instance, the best solution is to turn off a setting called “coasting” just before the end of the perimeter ,which can relief some of the built-up pressure within the extruder.Try turning this feature on and increasing the value until the blobs stop appearing.

So that’s the solution to the blobs. Now I am printing a larger Pokemon toy.I can’t go wrong this time, for the sake of my beloved girl.

Source: https://www.simplify3d.com/preventing-blobs-on-3d-print/

]]>
Tips on How to Improve 3D Print Quality https://blog.geeetech.com/3d-printing-trouble-shooting-guide/simple-ways-to-improve-your-print-quality/ Fri, 31 Jul 2020 07:00:00 +0000 http://www.geeetech.com/blog/?p=10262 3D printing can present all sorts of problems. Whether you are a newbie or an expert, chances are you are constantly tweaking a bit here and a bit there just to get the desired results. There are, however, a number of things you can do to get around some common issues in 3D printing and improve your print quality. The good news is that you do not have to be an expert to get started.

Assembly & Set Up

Set up your 3D printer as per the instructions. No matter how experienced you are, your vendor supposedly knows the products better than you do. It is recommended that you use parts, software, and materials from the same brand wherever you can to get the best experience. Remember, every 3D printer has its characteristics. Be open to some trial and error down the road.  

Software Update

Keep your system up to date. Manufacturers and slicer companies are constantly experimenting with their software and firmware to fix bugs and improve performance. If your machine features an automatic update, enable it.

Maintenance

Perform regular maintenance and calibration on your 3D printer: Form and maintain a routine of checks; keep your filaments from moisture and dust; calibrate the bed.

Supports

Bear in mind the 45-degree rule and 5mm rule. Any overhangs of above 45 degrees(or 60 degrees depending on your printer) may require supports. Just like overhangs, not all bridges require support. Consider supports only when the bridge is more than 5mm long. “Rafts”, and “brims” are great support tools to increase adhesion. Add support structures to your design for any steep overhanging features or models that have a small base.

While supports are great for some cases, you may want to avoid them, for the following reasons: first, they consume extra filament; second, the print takes longer time; and finally, removing the support structure of the print can be a pain. If you are still not sure whether you need support, run a test print to find out. You can also use your creativity to make the support structures part of your design, in case you think them necessary. Ways to circumvent supports: reorient your model; reduce the overhang angles; and split your model into smaller parts.

The first layer

Your first layer is the foremost important layer of your print. Make sure it sticks well to the bed. Again, support structures, a heated bed, and glue all are great tools to help with adhesion.

Details

Examine the details of your model. Are there any tiny projections or parts that are too small to print on a desktop 3D printer? In your printer, there is a very important but often overlooked variable, that is the line width, which is determined by the diameter of the printer nozzle. Most printers come with a nozzle of 0.4 mm or 0.5 mm in diameter.

]]>