3D printing filament | Geeetech https://blog.geeetech.com Get Your Ideas Into Life Sun, 28 Sep 2025 09:23:29 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.3 https://blog.geeetech.com/wp-content/uploads/2025/06/cropped-blog-logo-32x32.png 3D printing filament | Geeetech https://blog.geeetech.com 32 32 Why TPU Filament Absorbs Moisture Easily and How to Dry It https://blog.geeetech.com/materials/3d-printing-filament/why-tpu-filament-absorbs-moisture-easily-and-how-to-dry-it/ https://blog.geeetech.com/materials/3d-printing-filament/why-tpu-filament-absorbs-moisture-easily-and-how-to-dry-it/#respond Sun, 28 Sep 2025 09:23:26 +0000 https://blog.geeetech.com/?p=13358 If you have ever used TPU 3D printer filament before, you might have had issues with a stringing mess created by the printer, or maybe bad layer adhesion. This is often caused by moisture in the TPU filament, which typically happens when it is not stored in an airtight container or package. So let us try to understand this phenomenon better, and how to fix the issue. Enjoy!

What Is TPU?

In short, TPU filament (Thermoplastic Polyurethane)  is a popular filament among hobbyists and pros alike to work with in their 3D printers, and is generally considered a user-friendly and cost-effective soft material. It is valued for its unique combination of rubber-like flexibility and plastic-like processability, which is ideal for use in a wide variety of situations and applications.

However, it also happens to be hygroscopic, meaning that it will pick up moisture from the air. You should be aware of this, because it not only impacts the way you should be dealing with the material, but also how much you need to take into consideration when storing your used TPU 3D printing filament.

If you want to learn more about TPU properties, answering questions such as “Is TPU Waterproof?” we have already written another article covering the filament in more detail here: TPU Filament Guide.

TPU’s Hygroscopic Properties

As mentioned above, TPU has hygroscopic properties, which make the material susceptible to moisture absorption. This is due to the overall chemical structure of the filament, and not something that can be avoided with TPU.

On a high level, you can think of TPU as a blend of hard and soft segments, which together provide both strength and flexibility to your 3D printed objects. However, this also creates “holes”, which in scientific terms are called polar sites that allow hydrogen to bond with the material.

Below, we have highlighted the TPU’s hygroscopic properties, and what the molecular structure looks like for the more scientific readers.

Strong Polar Chemical Bonds

  • Urethane Linkage (-NH-COO-): It is the basic chemical bond that constitutes the polymer backbone, which has a high polarity.
  • Carbonyl (C=O) and Amide (-NH-) Groups: These groups are very polar and have a natural affinity to water molecules.

Hydrogen Bonding Mechanism

  • Water molecules (H₂O) are also strongly polar.
  • Oxygen (O) and Nitrogen (N) atoms on the TPU chain form strong intermolecular hydrogen bonds with hydrogen (H) atoms in water molecules, effectively “trapping” them.

How to Identify Moist TPU Filament

Alright, now that you know TPU can absorb moisture, how do you figure out whether it is good for use, or whether you need to dry it before using in your 3D printer? Luckily, there are a few things you can do to identify wet filament symptoms. Below we have listed 3 different signs so you can identify moist TPU filament.

  1. Hearing cracking or popping noises from the hot-end while printing.
  2. Formation of small bubbles inside the filament or defects on the surface of a printed part or model.
  3. Wet or moist filament tends to feel tacky and/or brittle, losing some of its flexibility.
Wet filament vs. dry filament
Finished print showing identifier number 2 from the list above: small bubbles and defects. (Source: H3dSprint@printables)
Resilience of the moist filament  and dry filament
The resilience of the moist grey filament after bending is significantly lower than that of the dry blue TPU filament.

The most important point is number 3, that can be tested before you start printing with the filament. So try handling the TPU filament in your hand, and see if it feels sticky, or whether it might It feels stiffer and bounces back faster when bent than you remember. As you know, TPU is a rather flexible filament, so you should be able to bend it quite a bit before it snaps.

How to Prevent and Dry Moist TPU Filament

The best way to avoid any type of moist TPU 3D filament in your prints, is to store all your materials properly. Of course, if moisture has already occurred, we can also remedy it.
Generally speaking, there are two different methods that yield the most consistent results, while maintaining the flexible 3d filament properties.

Proper Storage

  • Use airtight, moisture-barrier bags, such as vacuum-sealable bags with desiccant.
  • Use dry storage containers.

There are also other options you can use, such as normal plastic bags with zip ties or tape ensuring a solid seal, although these are not as reusable and practical for frequent printing, and also more prone to failure.

Dry Filament

If you believe your TPU filaments might have trapped some moisture inside it, no amount of correct storage can fix the issue. You will instead need to manually extract the water by drying your TPU filament at home.

  • Ideally you would use a professional filament dryer, as it is the most effective method. In this case the recommended TPU drying temperature settings are 50–60°C for 4–6 hours.
  • Alternatively, you can sometimes get away with using your conventional oven, although this is more of a DIY hack and difficult to truly control the precise temperature. So be careful if you try this at home.

If you are printing quite often at home, it might be worth investing in a special filament drying machine, as they are becoming cheaper now that more people are using them, and can save you quite a bit of money and time in the long run.


On the other hand, if you would rather save your money, sometimes you can find 3D printing workshops and makerspaces in larger cities, that will have one you can use for a small fee, or even for free on occasion. This can be a good way to achieve dry filaments and test out the dry machines, and maybe even connect with other hobby enthusiasts!

More tips for storing and drying filament: How to Dry And Store 3D Printer Filament.

Conclusion

In the end, TPU is both a strong and flexible 3D printer filament, but the downside is that its hygroscopic properties make it prone to moisture absorption, which can quickly ruin a print. But this isn’t a lost cause.

If you know how to identify the warning signs of a wet filament and recognize that adequate filament storage is your first line of defense, the problem can become much easier to deal with. If moisture enters your filament, bear in mind that a filament dryer is worth the investment to guarantee your 3D prints will be reliable and of quality. A little preventative maintenance will keep your all-purpose TPU filament ready for your next great project.

]]>
https://blog.geeetech.com/materials/3d-printing-filament/why-tpu-filament-absorbs-moisture-easily-and-how-to-dry-it/feed/ 0
Alles, was Sie über Holz Filament wissen müssen https://blog.geeetech.com/deutsche-kolumne/alles-was-sie-uber-holz-filament-wissen-mussen/ https://blog.geeetech.com/deutsche-kolumne/alles-was-sie-uber-holz-filament-wissen-mussen/#comments Thu, 18 Sep 2025 08:48:14 +0000 https://blog.geeetech.com/?p=13341 Holzfilament verbindet die natürliche Anmutung von Holz mit der leichten Verarbeitbarkeit von PLA. Auf Basis von PLA Filament entsteht durch die Zumischung von Holzpartikeln ein 3D Drucker Filament, das eine warme Farbe, eine dezente Maserung und eine matte Oberfläche bietet. Wer seinen 3D-Drucker mit den richtigen PLA Holz Filament Einstellungen ausstattet, erzielt damit beeindruckende 3D-Druck-Ergebnisse – ob für Dekoration, Prototypen oder Gebrauchsgegenstände.

Was ist Holz (Wood) Filament?

Geeetech Holz filament
Geeetech Holz filament (Walnuss)

Unter Holz Filament versteht man ein Verbundmaterial aus PLA Filament und feinen Holzfasern oder Holzmehl, auch bekannt als Woodfill Filament. Teilweise wurden früher Sägemehl-Varianten verwendet, doch heute bestehen die meisten Holz 3D Drucker Filamente aus Holzpartikeln, die deutlich feiner sind. Es gibt Hersteller, die Filamente mit 15%-50 % Holzanteil im Filament anbieten – das verleiht den Objekten sowohl Textur als auch Geruch natürlich wie Holz. Durch Schleifen, Beizen oder Ölen lässt sich die Oberfläche wie bei echtem Holz behandeln, und auch der Geruch während des Druckens erinnert an Holz oder leicht verbranntes Holz – hier ist gute Belüftung empfohlen.

Vorteile und Nachteile von PLA Holz Filament

Bevor Sie sich für Wood Filament entscheiden, sollten Sie über dessen Vor- und Nachteile informiert sein.

Was sind die Vorteile von Holz PLA?

Holz PLA bietet neben seiner Umweltfreundlichkeit gleich mehrere Pluspunkte: Modelle wirken durch die Holzoptik des besonderen 3D Drucker Filaments warm und natürlich. Die Nachbearbeitung ist einfach, da sich die Oberfläche wie echtes Holz behandeln lässt – Schleifen, Ölen oder Wachsen führen zu hochwertigen Ergebnissen. Durch die Verwendung feiner Holzpartikel und großer Holzanteile im Holz Filament entstehen starke haptische Eigenschaften; auch Geruch kann beim Drucken eine sinnliche Erfahrung sein. Dank der niedrigen Drucktemperaturen des PLA-Basisanteils ist das Material auch für weniger erfahrene Anwender geeignet. Hier klicken für mehr PLA Filament Eigenschaften.

Was sind die Nachteile von Holz PLA?

Die in das PLA 3D Filament eingebrachten Holzpartikel können bei falschen Einstellungen zu Düsenverstopfungen führen. Außerdem ist eine begrenzte Druckgeschwindigkeit notwendig, um saubere Oberflächen zu erhalten. Holz PLA ist – vor allem bei hohem Holzanteil – weniger zäh und mechanisch belastbar als reines PLA. Schließlich bleibt die Wärmebeständigkeit begrenzt – ein typisches Merkmal von PLA-Verbindungen.

Tipps zum Drucken mit Holz Filament

Um mit Holz PLA Filament saubere 3D-Druck-Ergebnisse zu erzielen, sollte das Material stets trocken gelagert werden. Auch eine glatte Filamentführung und ein sauberer Feeder sind wichtig. Danach folgen die eigentlichen Druckeinstellungen: zunächst die Basiswerte für PLA Filament (wie Extrusion, Flow und Lüfterleistung), anschließend die Feinabstimmung der Holzfilament-Einstellungen. Wichtig: Experimentieren mit Slicer-Einstellungen lohnt sich, z. B. mit Ebeneneinstellungen oder speziellen Slicer-Funktionen (z. B. Kämmen / Combing), um Fädenziehen und unnötige Bewegungen zu vermeiden.

PLA Holz Filament Einstellungen

Die Drucktemperatur für die Verwendung von Holz Filament im PLA 3D Druck sollte zwischen 190 und 230 °C liegen. Für Geeetech-Holzfilament empfiehlt sich, die erste Schicht bei 220 °C zu drucken und danach auf 205 °C zu wechseln. Dabei verändert die Temperatur auch den Farbton: Je heißer der Druck, desto dunkler wirkt das Ergebnis. Für die Verwendung von PLA Holz Filament eignen sich außerdem folgende Einstellungen: Das Heizbett deines Druckers wird auf 60 °C eingestellt, die Druckgeschwindigkeit liegt bei 30 bis 50 mm/s, die Schichthöhe bei 0,25 mm. Der Lüfter sollte auf 50 bis 70 % laufen.

Welche Düse eignet sich?

Für Holz Filament im PLA 3D Druck ist die Wahl der Düse entscheidend. Grundsätzlich gilt: Je feiner die Düse, desto detailreicher das Ergebnis, und je größer die Öffnung, desto geringer die Gefahr einer Verstopfung durch Holzpartikel. In diesem Fall empfiehlt sich eine 0,6-mm-Düse, die das Risiko einer Verstopfung reduziert und für einen reibungslosen Partikelstrom sorgt.

Beispiele aus dem Holz 3D Druck

Ein Blick auf konkrete Modelle zeigt, welches Potenzial Holz Filament hat und wie überzeugend die 3D Druck Ergebnisse ausfallen können. Mit den richtigen Einstellungen im Holz 3D Druck entstehen Objekte, die dekorativ und zugleich praktisch sind.

Blumentopf

3D-gedruckter Blumentopf
Blumentopf, hergestellt mit Geeetech Poplar Wood PLA-Filament

Mit Holz PLA entsteht ein kleiner Pflanztopf, dessen Oberfläche durch feine Rillen und eine warme Maserung besticht. Nach leichtem Schleifen oder Ölen wirkt er fast wie aus echtem Holz gefertigt – ein ideales Beispiel dafür, wie sich 3D Druck aus Holz harmonisch in den Alltag einfügt.

Holzornament

Holzornament
Holzornament, hergestellt mit Geeetech Wood PLA-Filament

Auch filigrane Ornamente profitieren vom Einsatz von Wood 3D Filament. Durch die matte Oberfläche und die feine Struktur entstehen natürliche Deko-Elemente, die an handgeschnitzte Arbeiten erinnern. Mit moderater Druckgeschwindigkeit und sauberer Kühlung lassen sich gleichmäßige Konturen erzielen.

Würfel (Kundenbeispiel)

3d druck holz Würfel
Würfel, gedruckt mit Geeetech Walnut Wood PLA-Filament (aus einer Kundenrezension)

Ein Nutzer druckte mit Walnuss Holz PLA einen Testwürfel. Grundlage war ein Profil auf Basis von PLA Filament, angepasst mit einer reduzierten volumetrischen Rate von 10 mm³/s. Die Düsenerwärmung lag bei 205 °C, das Bett bei 60 °C, der Flow bei 0,98 und der K-Wert für Pressure Advance bei etwa 0,0175. Das Ergebnis: glatte Seitenwände, eine Holztextur, die Layerlinien nahezu verschwinden lässt, und nur leichte Lücken im Top-Layer. Dieses Beispiel zeigt, wie präzise Einstellungen zu hervorragenden 3D Druck Ergebnissen mit Holzfilament führen.

Fazit

3D Druck Filament aus Holz verbindet die Natürlichkeit von Holz mit der Druckfreundlichkeit von PLA. Mit den richtigen 3D Drucker Einstellungen entstehen Objekte, die sowohl optisch als auch haptisch überzeugen. Wer moderate Geschwindigkeiten, ein sauberes Kühlmanagement und die empfohlenen Düsen einsetzt, kann durch gezieltes Temperaturtuning Farbnuancen steuern und die Oberfläche individuell gestalten. Somit wird Holz PLA Filament zu einem vielseitigen Material für dekorative und praktische 3D-Druck-Projekte.

]]>
https://blog.geeetech.com/deutsche-kolumne/alles-was-sie-uber-holz-filament-wissen-mussen/feed/ 1
How to Recycle 3D Printer Filament https://blog.geeetech.com/materials/3d-printing-filament/how-to-recycle-3d-printer-filament/ Sat, 30 Aug 2025 10:35:10 +0000 https://blog.geeetech.com/?p=13308 If you have ever printed with your own 3D printer at home, you might have wondered what to do with 3D printer waste, and whether you could possibly recycle 3D printer filament at home. It is not a topic many people talk about in great detail, so this article will try to clear things up. Enjoy!

Why Should We Recycle 3D Printer Filament?

Every print that fails halfway through, or creates extra string and other unwanted extrusions, adds to the big pile of wasted filament that often just gets thrown out in the trash. This is especially true for multi-color 3D printers, since we not only deal with support rafts and test cubes, but also purge blocks and filament switches generated during prints.

The Environmental Aspect

This leads us to use way more filament than we really need to, which in turn can create an environmental impact in the long run, especially when thinking of printers around the globe creating a significant amount of waste on a daily basis.

The Economic Aspect

Throwing away perfectly good plastic not only wastes money, leading us to buy more and spend more on the material we waste, but potentially drives up the cost through supply and demand chains.

The Educational Aspect

Finally, if you are printing with your children, it can be a great way to look at recycling 3D printer filament in order to educate them about how to take better care of the environment and how to respect our planet. So let us take a closer look at some different methods and programs below.

Recycling by Companies

Many 3D printing material manufacturing companies have their own recycling programs, where the recycled plastic filament will be remade into fresh filament ready to be used for printers or other purposes. This is called “recycled filament”, and can often be cheaper but still a great overall material.

Other plastic product companies also place plastic recycling bins in the community to specifically collect filament and other types of plastic that can be recycled safely and effectively, so there are a few great alternatives to simply throwing out your old filament in the trash bin directly.

Recycling plastic in the community
Recycling plastic in the community

Recycling at Home

Another way you can recycle filaments is if you are willing to put in some more work at home, where you can use different methods in order to achieve some good results that are environmentally friendly, sustainable and cost-effective filament recycling.  

Step 1: Sorting the waste filaments

Typically, you will want to sort your different types of filament based on the material, so ABS in one pile, PLA in another pile and so forth. Different types of materials cannot be mixed as they have different chemical makeups. Next, you can also sort by color if you like.

Step 2: Shredding

If you have a messy ball of old stringy material, or half a 3D print that failed for some reason, you will need to process this. Typically, it is done by shredding, by putting the printing waste into a 3d printer shredder and then breaking it into small pieces.

Your goal should be to get small and uniform fragments, as this will help you later on when you have to melt and extrude the wasted filament. Not everyone has the money for a specially designed shredder, so an alternative is a pair of scissors or wire strippers to cut up the plastic into smaller chunks.

Step 3: Drying

Before you are ready to manipulate the waste filament, you should first ensure it is free of any moisture. This is done by drying your filament poops or scraps which have been shredded by you, either using a dedicated filament dryer, or some of the easily available tools at home, like an oven (preferably with a convection fan), a rice cooker (on “keep warm” mode) or similar methods. Below you will find our recommended settings for dedicated dryer machines.

Dedicated filament dryer settings:

MaterialDrying TemperatureDrying TimeNotes
PLA45°C – 50°C (113°F – 122°F)4 – 6 hoursAvoid higher temperatures, as PLA can become soft and even fuse together.
PETG60°C – 65°C (140°F – 149°F)6 – 8 hoursMore hygroscopic than PLA, requiring higher temperatures and longer times.
ABS70°C – 80°C (158°F – 176°F)4 – 6 hoursRequires relatively high temperatures to effectively remove moisture.
Nylon (PA)70°C – 80°C (158°F – 176°F)8 – 12+ hoursExtremely hygroscopic. Often requires 12+ hours, or even 24 hours for severely wet material.
TPU/TPE50°C – 55°C (122°F – 131°F)6 – 8 hoursFlexible materials are also prone to moisture absorption.


For safety reasons, only PLA is chosen for home recycling as it does not release any toxic fumes and so on.

Oven:
Spread the fragments on a baking tray (lined with parchment paper). Set the oven to its lowest possible temperature (typically no higher than 65-80°C ), and leave the door slightly ajar to release moisture. Bake for 30-60 minutes, watching closely to prevent melting.

Dry the Plastic fragments in oven
Drying the Plastic fragments in oven

Rice Cooker:
Place fragments in the pot, turn on the “keep warm” setting, and leave the lid slightly open with a chopstick for 4-6 hours.

Step 4: Extruding/Melting and Molding

Professional:

If you are printing often, and tend to collect large amounts of waste material, then it can be a good investment to purchase a special filament extruder, also known as a 3d printer filament recycler, to help you create recycled filament at home. This makes it easy and efficient, as the machine will simply need to be fed the processed 3D printing materials, then it will “spit out” the correct type of filament in terms of size and consistency.

Extruding filament
Extruding filament

Household:

However, due to the high price of filament extruder, it is not cost-effective for home enthusiasts that print only rarely, or anyone on a budget. Luckily, there are some a creative workarounds, namely melting and molding. By following the steps below, you can get some good results with a little practice.

  1. Fill the plastic fragments into a can, no more than 1/3 full with PLA filament fragments.
  2. Hold the can steadily over the heat source with your tongs. Constantly move the can to distribute heat.
  3. The fragments will first soften (1-2 minutes), then clump together, and finally become a viscous, molten liquid. At some point you will see it bubbling, this is any remaining moisture boiling away. Once the bubbling mostly stops, you have a thick, honey-like liquid.
  4. This entire melting process typically takes 3 to 6 minutes per small batch. Do not overheat until it smokes, as this degrades the plastic.
Heating plastic fragments
Heating plastic fragments
  1. Now it is time to pour. Carefully pour the molten PLA into your silicone mold.
pouring the molten PLA into the silicone mold
Pouring the molten PLA into the silicone mold

Step 5: Spooling & Cooling

Professional:

If you have invested in a filament extruder, you might have gotten a special cooling tank or some other gadget to help with the cooling and spooling process, as the extruded hot filament needs to be cooled and set immediately through a fan or water-cooling tank. After cooling, it is evenly wound onto the empty spool through a reel.

Household:

If you are doing this on a budget you can also get some good results with some care. First you need to let the mold sit undisturbed and cool down. Smaller amounts of filament will typically be cool to the touch and solid in 15-30 minutes. Larger objects may take over an hour. Do not try to demold early, as the plastic can be flexible but still soft. Once the material is cooled down you can demold.

Conclusion

This was a quick guide on how to recycle 3D printing filaments. We could go into much more detail with each step, so if you are unsure about anything be sure to research even further to learn the different techniques, or even watch a video or two so that you fully understand all the steps. We hope this guide helped, and made you think about all the wasted material next time you print. Take care!

]]>
3D Print Filaments for Outdoor Use https://blog.geeetech.com/materials/3d-print-filaments-for-outdoor-use/ Thu, 14 Aug 2025 08:00:21 +0000 https://blog.geeetech.com/?p=13292 If you have ever printed 3D designs made for outdoor use, you will most likely have noticed a big difference in performance and durability depending on the different filaments that were used. So to help you decide which option to pick for different outdoor scenarios, let us take a closer look today. Enjoy!

Properties of 3D Filament for Outdoor Use

It is important to understand what properties 3D printer filaments should have when using them outdoors, as they will need to withstand the environment in ways that indoor models generally do not. Below we have listed some of the most important ones.

Weather Resistance

General resistance to the weather in your area is one of the most important factors, so if you live in an area with lots of sunlight, UV-resistant filament should be a priority for your 3D filaments. The same is true for temperature resistance, low or high, so certain filaments hold up better under cold conditions while other filament materials are more ideal for hot conditions. Finally, you’ll want to look at moisture and humidity as well as waterproof capability.

PLA weathering outdoors

Mechanical Property

Depending on what your 3D print is used for, you might also want to ensure that the filament in question has a decent impact resistance, abrasion resistance or even long-term load-bearing capacity if you are using it to hold certain items in place (like brackets), as this will also narrow down your options of filaments.

Chemical Stability

And finally, some outdoor environments make it crucial for you to consider corrosion resistance and oxidation resistance, especially if you live near the ocean, where moisture, salt and pollutants from the sea can degrade your model, or harsher environments where the air quality and UV radiation might oxidize your models earlier than intended.

Comparison of Filaments Suitable for Outdoor Use

Below we have provided an overview of the main characteristics for each of the following 5 filaments, ASA, PETG, PC, Nylon and TPU. As well as some recommended application scenarios of these materials.

PropertyASAPETGPCNylonTPU
UV ResistanceExcellentGoodModeratePoorModerate
Temp ResistanceHigh (80-100°C)Moderate (70-85°C)Very High (110-135°C)Moderate (80-100°C)Moderate (50-80°C)
Water ResistanceGoodExcellentGoodPoor (absorbs)Excellent
Impact ResistanceHighModerateVery HighHighVery High (flexible)
Abrasion ResistanceGoodModerateExcellentGoodExcellent
Load-BearingGoodModerateExcellent (rigid)Good (flexible)Poor (too soft)
Chemical StabilityExcellent (resists corrosion)Good (resists moisture)Excellent (resists oils, chemicals)Moderate (absorbs moisture)Good (resists oils, solvents)
Best ForOutdoor signs, automotive parts, fixturesWaterproof containers, garden toolsHigh-strength structural parts, helmetsFunctional gears, hingesSeals, gaskets, flexible parts

ASA Filament

As you can see in the table above, ASA filament is generally the best filament for outdoor use, as it works well for most scenarios.  ASA performs more stably in extreme climates. It has excellent UV resistance and is not prone to fading or becoming brittle even after long-term exposure to sunlight, and Good water resistance and excellent chemical resistance.
But its printing difficulty is relatively high, requiring a heated bed and a closed printing cabin. It is prone to curling edges. The cost of ASA filament is also relatively high, around $30/KG.

PETG Filament

Next up, we have PETG 3D printer filament which is not as temperature resistant, but is a great water safe 3D printer filament, making it a good option in climates where it often rains, as well as for garden utilities such as planter boxes or similar. The PETG UV resistance is also decent, but a little poorer than ASA. If your budget is not sufficient to choose ASA, or if your print is not used in extreme weather, PETG will be a more cost-effective option. And PETG’s threshold for printing skill is also lower than that of ASA.
Click here to buy PETG filament bundle.

PETG 3D Printer filament
Geeetech PETG 3D Printer filament

PC Filament

The highest performing material for high temperature tolerance is polycarbonate filament and it can be a major determinant in specific situations. Generally speaking, this high temp 3D printer filament also does an excellent job of enduring most other elements as well and is an excellent choice for a wide variety of builds.

Nylon Filament

Nylon filament can be a great option for functional parts that are not directly exposed to water, as the water absorption property is a main downside of nylon as a material in many cases. It is considered quite a decent heat resistant 3D printer filament as well, making it applicable for a number of uses. There are also reinforced versions of nylon on the market that are chosen by outdoor enthusiasts.

TPU Filament

And finally, TPU filament is quite poor in terms of temperature resistance, and also not a great option for load-bearing projects. However even the lower point of 50°C is more than enough for outdoor use in most parts of the world, and the impact resistance property of TPU filaments is the best out of the filaments we have covered, making it great for parts or items needing that extra strength, and some flexible components (like outdoor water bottle sealing rings and garden faucet sealing rings) that can’t be printed by ASA, PETG and others strong 3d printer filament.

tpu sealing rings
TPU sealing rings

How to Improve Prints’ Outdoor Durability?

Now that we have categorized the properties of different 3D printing filaments for outdoor use according to the main factors playing a role in durability, it is worth noting that we also have the option of enhancing the durability even further with post-processing or when designing our models.

Post-Processing

Once your design is finished in the printer, you can further improve durability by spraying UV protective paint on your models in order to further increase their resistance to sunlight, and avoid them losing strength or fading as rapidly. In general this can be applied to all types of materials, but each type of filament might require a different product, so be sure to research what works for ASA or TPU for instance.

The same goes for waterproof coating that can make the models absorb less water, although this coating might need to be reapplied in extreme cases. You can also chemically smooth your prints in order to seal the layer lines, while also reducing the penetration of moisture, thus making your models last longer.

Optimization Design

No matter which filament you use on your 3D printer, you’ll always be able to choose to design your models with more material to make them stronger. For example, you may want to make the walls thicker so you’ll get more strength and resistance, and the models won’t degrade so easily as the extra layers will be slower to degrade over time naturally.

You should also consider avoiding water accumulation structures, as some designs might have pockets that catch water and let it sit, so design your models according to the environment in order to optimize and provide a longer lifespan.

water accumulation structure and drainage structure design
water accumulation structure vs. drainage structure design

Conclusion

All in all, we have many fantastic options for printing 3D models designed to be used outdoors, that can last a long time while also maintaining their structural integrity and beautiful surfaces. And by taking a little extra time to plan ahead and make sure you use the best possible filament, perform post-processing if needed and optimize the design to fit the environment, your designs can last for years without any issue. We hope you enjoyed this article and learned something. Thanks for now!

]]>
ASA vs. ABS: Which Is the Ultimate Value Champion in 3D Printing? https://blog.geeetech.com/materials/asa-vs-abs-which-is-the-ultimate-value-champion-in-3d-printing/ Tue, 15 Jul 2025 05:46:59 +0000 https://blog.geeetech.com/?p=13217 Whether you are printing many different prints, or just looking for the best value, researching more about ASA and ABS filament is a great way to set yourself up for success. So today we will be looking at which is the best 3D printer filament as a general all-around material in terms of pure value.

ABS and ASA 3Dbenchy
ABS and ASA 3Dbenchy

ASA vs. ABS Filament: Composition

Before diving into details, let us first start with a few basics about ABS and ASA 3D filament. They are both what is known as ternary copolymers, which is a fancy way of saying both have 3 key monomers in their composition. However, the specific composition is slightly different, which provides different effects in your 3D printer.

ABS filament uses butadiene, which makes the filament and 3D prints tougher, and also provides impact resistance. ASA filament, on the other hand, uses acrylate as the third monomer, which improves weather and UV resistance, but makes the filament slightly less able to resist impacts (around 15% less resistant than ABS).

Both the ASA and ABS printer filaments use acrylonitrile and styrene in their compositions. This provides great chemical resistance and rigidity to your models, while also making them easy to process once printed. This means that the main difference is that ASA is great for outdoor use, while ABS is great for heavy duty prints.

ASA vs. ABS: Properties

Next, let us take a closer look at ABS vs. ASA filament properties in a table to get a quick and easy overview. As you can see below, they are both decent at heat and chemical resistance, with the main differences being in terms of strength, UV and weather resistance.

PropertyASAABS
StrengthHigh tensile strengthSlightly higher impact strength
UV ResistanceExcellent (no yellowing)Poor (degrades in sunlight)
Weather ResistanceExcellent (resists moisture, heat, cold)Poor (cracks, warps outdoors)
Heat ResistanceGood (slightly better than ABS)Good (softens at ~100°C)
Chemical ResistanceGood (resists oils, acids)Good (but weaker than ASA)
Surface FinishSmooth, matteGlossy, prone to warping

ASA vs. ABS: Printing

When it comes to printing with these two filaments, there are some slight differences in terms of settings, the optimal environments and potential issues. Again we have opted for a table to quickly list the differences between ASA and ABS filament. For instance, look at the difference between ASA and ABS print temperature in order to see how the different compositions change the printing settings.

FactorASAABS
Printing Temp.240–260°C (5–10°C higher than ABS)230–250°C
Bed Temp.90–110°C (heated bed required)90–110°C (heated bed required)
CoolingGentle fan (10–20%) improves surfaceMinimal or no fan (warp risk)
EnclosureRecommended (reduces warping)Required (prevents cracking)
Odor/FumesStrong fumes (ventilation needed)Strong fumes
AdhesionPEI or glue stick recommendedABS juice or Kapton tape
Warping/CrackingLess prone (better layer adhesion)High risk (needs enclosed chamber)

As you can see, ABS is more likely to warp or crack when being printed and thus it is recommended to use a 3D printer with an enclosed chamber for the best results, but cooling is not necessary for most cases. Both filaments do well with ventilation due to the strong ASA filament ​fumes, and the printing temperature of ASA plastic material is usually 5 to 10 ℃ higher than ABS.

ASA vs. ABS: Performance of Prints

Once you have printed your 3D prints with either ASA filament or ABS 3D printer filament, it is also important to consider the performance due to the different properties. Post-processing is a key factor for many people, and both materials do fairly well in this regard, with ABS being the slight winner due to its particles are relatively soft than ASA.

AspectASAABS
DurabilityExcellent outdoor longevityStrong but degrades outdoors
Post-ProcessingSanding, paintingEasier Sanding, acetone-smoothable smoothing
UV StabilityNo degradation over timeYellows, becomes brittle
Impact ResistanceGood (but ~15% weaker than ABS)Excellent
FlexibilitySlightly more rigidMore flexible

ASA filament 3d printed Objectes
ASA Prints

ABS Prints

ASA vs. ABS: Applications

While we have already touched on applications earlier, let us look in more detail at the best uses for ABS plastic filament and ASA filament. The rule of thumb is that ABS is best for indoor parts, while ASA is a great option for prints used outside.

Digging a little deeper, we often see examples of ABS parts being used in functional parts. This is because ABS is more suitable for printing indoor engineering components, as it has high strength but is not weather-resistant. Examples include items such as gears, housings, dashboards, electronics enclosures or even toys due to their durability and the fact that they are easy to clean up and post-process.

ABS GEAR
ABS Gear

ASA has the same mechanical properties and offers better UV resistance, weather resistance and color stability, making it more suitable for outdoor applications. ASA filament is thus often used for outdoor signs, garden tools, light fixture housings, and even bumpers for cars or bikes on larger printers. They are also used for drone bodies and RC cars as the UV-resistance means they will not fade or turn yellow as opposed to ABS 3D printing filament.

Outdoor ASA objects
Outdoor ASA Object

Conclusion

In terms of service life, ASA 3D printer filament emerges as the big winner. It has superior weather resistant properties, makes for easy printing, and its long-term toughness makes it the smarter purchase for most applications, while it will cost a few dollars more initially. If your printed models are only designed to be used indoors and you desire the highest amount of strength and resistance possible, ABS remains a quality, economy-priced option. So here’s our tip: choose ASA for versatility and long-term life, and then choose ABS for budget ruggedness.

]]>
PETG Metal filament: Upgraded Texture and Performance https://blog.geeetech.com/materials/petg-metal-filament-upgraded-texture-and-performance/ Tue, 24 Jun 2025 09:42:08 +0000 https://blog.geeetech.com/?p=13084 If you are looking to create 3D printed objects with a really special texture and high impact resistance you might be interested in 3D printer filament combining PETG and metal, as this material has metal powder embedded in the polymers, which creates a unique and interesting visual effect, while also having a set of beneficial properties such as high strength and impact resistance. Let’s look in more detail and also explore some prints!

What Is PETG Metal Filament?

Geeetech PETG metal filament
Geeetech PETG Metal Filament

As we’ve briefly mentioned in the introduction, 3D printing filaments using PETG and metal are a special type of PETG 3D printer filament which combines the durability and easy printing properties that PETG offers, while also blending metal powders (often bronze, copper, steel or iron) into the composition.

This combination produces a strong yet flexible and chemically resistant material that looks amazing and also weighs a bit more, which makes it feel more like real metal due to the added metal powder.

Highlights of PETG Metal Filament

One of the most desired and unique benefits of metal filament compared to standard PETG filament is, of course, the metallic luster and texture that is achievable on a home printer. While it will never touch like a 100% metal product, it still looks realistic and very nice for the low cost and easy printability.

Another thing worth highlighting is the great layer adhesion and durability, which is thanks to the PETG composition, allowing the metal powder to add weight and more quality while still providing a solid and more flexible 3D print than PLA and ABS that performs as you would expect from PETG due to the overall great mechanical performance.

The metal 3D filament also makes it able to withstand harsh weather and is even anti-corrosive. You can even perform post-processing on PETG metal filament as you normally would, such as grinding, electroplating and coating, further enhancing the metallic filament texture.

Print Settings and Some Challenges

While you probably need to change the temperatures slightly compared to normal PETG (more on this down below), the overall filament is compatible with almost all FDM printers, and thus a great option for people looking for a heavier and more premium feel to their newly printed objects.

Recommended Print Settings

We have spent quite some time working on tweaking the settings in order to get the best results using the metal 3d printing filament. Below are what we have come to the conclusion that provide a great starting point for most standard FDM printers out there when using metal 3D printer filament​. Remember that you might have to adjust some settings, but this should get you started.

SettingValue / Recommendation
Nozzle Temperature220–240 °C
Hot Bed Temperature70–80 °C (Can be turned off, but low temp increases adhesion)
Printing Speed40–50 mm/s (Depends on the individual design)
Cooling FanGenerally, no fan required. Small models may need up to 50% cooling for fine details.

Print Challenges

There are a few things to keep in mind when trying to print with this material, as the metal part of the metal filament will need some consideration out of the ordinary, the main one being PETG temperature settings.

Avoid Printing at an Too High Temperature

The primary thing to remember, is that you should most likely adjust the PETG printing temperature slightly lower than you would for other PETG filaments. During our own tests, we initially printed the object at a 255°C setting. However, the result was not satisfactory, as the final print appeared rough with bubbles and stringing. It was not until we lowered the temperature to 230°C that the situation began to improve.

First test results from using a nozzle temperature of 255

String due to high temp

Improvement after lower the overall temperature of printing to around 230

After spending a considerable amount of time, we have finally found a great template to print

It is worth noting that although our printing parameters are suitable for most cases, we still recommend that you print a temperature tower first to determine the printing temperature that is most suitable for you, because different brands of 3D printers have different characteristics.

Never Neglect the Humidity

Another key thing to keep in mind, is that because Geeetech’s PETG metal filament has metal powder added to the composition of the material, the moisture absorption capacity is slightly higher than standard PETG. Therefore, it is generally necessary to dry filament that has already been opened previously, at 80° for around 4 to 6 hours before printing.  

Result Show Time

Below you can see some of the results we ended up with after dialing in on the best 3D printer settings for the metal PETG 3D filament, where you can see the beautiful metal luster and powder dust shining through the objects.

Notice how there are no more bubbles or stringing thanks to the improved settings. These 2 screws are ready to be used, or you could even post-process them slightly to get rid of the tiny layer artefacts and further improve the visual appearance.

This hand vise turned out quite well, and we can now use it as part of our tool collection thanks to the strong mechanical properties of the PETG. Not only that, it also emits a metallic luster, which is particularly noticeable under the light.

You don’t have to print objects that are going to be used for their mechanical strength. The results are also amazing when trying out decorative objects, such as this statue that imitates a metallic copper printed by Geeetech brown PETG metal filament, looking great effect.

Our final piece to showcase for this article came out extraordinarily well. Just look at those sharp edges and the overall unique sheen and metallic texture. If given some post-processing and polish, this will look even more incredibly beautiful as a decorative piece! Let’s learn more about Geeetech’s new arrival Green PETG metal filament.

Conclusion

Thanks to the combination of the easy-to-print and sturdy PETG polymer and the different types of metal powder, you can create some really unique and beautiful 3D prints that will surprise anyone you show them to. And since you can also work on them afterwards like with any normal filament, you can create functional objects such as tools or mechanical parts or even decorative objects that look great on your bookshelf, or perhaps can be given as gifts!

]]>
PETG Printing Troubleshooting https://blog.geeetech.com/3d-printing-trouble-shooting-guide/petg-printing-troubleshooting/ Sat, 07 Jun 2025 07:55:54 +0000 https://blog.geeetech.com/?p=13042 PETG is a strong and slightly flexible 3D printer filament that is easier to print with, compared to other 3D printing filaments like ABS. That doesn’t make it immune to issues, though. This article covers how to troubleshoot typical PETG printing issues such as stringing, first layer adhesion, weak interlayer adhesion, nozzle clogging, and rough surfaces. Enjoy!

PETG Stringing

PETG Stringing

Stringing is a very common problem when printing with 3D printing filament PETG, and is defined as a thin filament that stretches across the gap of the print. Stringing occurs when the molten layer of PETG seeps out of the nozzle while the nozzle moves non-printing directional moves. This can happen for a number of reasons, such as incorrect retraction settings, excessive heat, or the surrounding environment.

Reasons and Solutions

  1. High Printing Temperature: PETG filament has good flow at higher temperatures, with the downside of creating excessive oozing.
    Solution: Lower the PETG printing temperature to 220–240°C, depending on your filament brand and printer. Test in 5°C increments to find the sweet spot where extrusion is smooth without stringing.
  2. Improper Retraction Settings: Insufficient retraction distance or slow retraction speed fails to pull molten plastic back into the nozzle, causing it to leak during travel.
    Solution: Set retraction distance to 5–8 mm and retraction speed to 40–50 mm/s. Adjust these in small increments in your slicer (e.g., Cura, PrusaSlicer) and test with a stringing test model.
  3. Slow Nozzle Travel Speed: If the nozzle moves too slowly over open spaces, molten PETG can ooze, forming strings.
    Solution: Increase travel speed to 100–200 mm/s or higher in non-print areas. Enable “Z Hop” (Lift Z) in your slicer to raise the nozzle slightly (0.2–0.5 mm) during travel, preventing dragging. Note that Z Hop may slightly increase print time.
  4. Wet Filament: The moisture absorbed by PETG will become steam during the printing process and lead to increased oozing and stringing.
    Solution: Dry the filament with a filament dryer or in the oven at 60–70°c for 4–6 hours. Store the filament in a sealed container with a desiccant so it doesn’t reabsorb moisture.
  5. Poor Nozzle Condition: A nozzle that is worn out, or dirty can cause inconsistent extrusion and leaking.
    Solution: You can clean the nozzle by a wire brush and/or perform a cold pull with cleaning filament. You may want to replace the nozzle if it is worn out or damaged.

The Adhesion Problem of the First Layer

The first layer of any successful PETG 3D printer filament operation is the most important to get right. It is especially important with PETG that you achieve good bed adhesion. If the first layer doesn’t stick to the build plate well, you risk warping and curling as well as the print possibly falling completely off the build plate and destroying the print early on in the process.

PETG first layer issue
PETG first layer issue

Reasons and Solutions

  1. Incorrect Nozzle Height (Z-Offset): If the nozzle is too low, the filament may be squished too much or even scraped off the bed. If it’s too high, the filament won’t properly adhere to the print surface and may lead to under-extrusion in the first layer.
    Solution: To fix this, you can just re-level the bed and properly calibrate Z-offset to squish the first layer just so it is forming smooth and gap-free lines. Use a first-layer test print to fine-tune as well.
  2. Unsatisfactory Bed Temperature: A cold bed reduces adhesion, while an overly hot one can cause “elephant’s foot” (bulging at the base).
    Solution: Set the PETG bed temperature to 80–90°C, depending on the filament and bed type. Test in 5°C increments to avoid over- or under-adhesion.
  3. Dirty Bed: Dust, oils, or leftover filament prevent proper adhesion.
    Solution: Clean the build surface with 70%+ isopropyl alcohol or warm soapy water before every print.
  4. Cooling Fan On Too Early: Early cooling causes rapid shrinkage, preventing proper bonding to the bed.
    Solution: Disable the cooling fan for at least the first 2–5 layers to allow the filament to stay optimal temp and stick properly.
  5. Unsuitable Printing Environment: Drafts or low ambient temperatures lead to uneven cooling and warping.
    Solution: Use an enclosure or draft shield to maintain a stable environment around 20–25°C.
  6. Poor First Layer Contact Area: Small or sharp-edged prints may not grip the bed well enough.
    Solution: Add a skirt to prime the nozzle, a brim (5–10 mm) to increase surface contact, or mouse ears on corners to prevent lifting.
  7. Incompatible or Worn Bed Surface: Some surfaces may be too smooth or degraded over time.
    Solution: Apply a thin layer of glue stick, hairspray, or bed adhesive on glass. Replace worn PEI sheets or rough them up slightly with fine sandpaper (e.g., 2000 grit).

Poor Interlayer Adhesion

Interlayer adhesion determines the structural strength of a printed object, and PETG’s potential for strong layer bonding can be undermined by incorrect settings or poor filament handling. When layers fail to fuse properly, parts may split along layer lines under minimal stress. This not only affects functionality but also makes prints more susceptible to mechanical failure.

PETG Poor Interlayer Adhesion
PETG Poor Interlayer Adhesion

Reasons and Solutions

  1. Low Print Temperature: Insufficient heat prevents proper melting and bonding between layers.
    Solution: Raise the PETG temperature by 5–10°C within the 220–240°C range to improve flow and bonding. Test incrementally to avoid stringing.
  2. Excessive Cooling: High fan speeds or early cooling solidify PETG too quickly, reducing layer fusion.
    Solution: Disable the fan for the first 2–5 layers, then use only 10–30% PETG fan speed for overhangs or bridges. Small models may require slightly more cooling (up to 50%) for fine details.
  3. Fast Print Speed: Rapid printing limits the time for layers to bond.
    Solution: Set outer wall/perimeter speed to 40–60 mm/s to allow sufficient bonding time. Adjust infill speed to 60–80 mm/s for efficiency without sacrificing quality.
  4. Under-Extrusion: Incorrect flow or line width settings result in insufficient filament deposition.
    Solution: Verify E-steps (extruder steps per mm) using a calibration test. Adjust the flow rate in the slicer to 95–98%, or slightly higher (103–105%) if the under-extrusion issue persists.

Nozzle Clogging

For those of us printing with PETG, nozzle clogs or jams can be a very common and frustrating problem. It can cause under-extrusion, skipped layers, and even complete print failure. PETG is a fairly sticky material in its molten state and can adhere to the nozzle when it’s printing at temp, therefore, when the filament begins to cool in the cooler area of the nozzle, it can lead to partial or total stops.

Nozzle Clogging

Reasons and Solutions

  1. High Print Temperature: Excessive heat causes the filament to carbonize with an incorrect PETG nozzle temp.
    Solution: Reduce the print temperature to 220–240°C to minimize carbonization.
  2. Low Z-Offset: The nozzle dragging on the print creates backpressure, leading to clogs.
    Solution: Ensure the nozzle is at the correct height to avoid dragging on the print. Use a first layer test to confirm.
  3. Filament Residue: Molten PETG sticks to the nozzle and burns, forming blockages.
    Solution: Inspect the nozzle before and after prints. Clean with a wire brush while hot or perform a cold pull to remove residue. Replace the nozzle if clogs persist.

Rough Surface

A rough or inconsistent surface finish not only looks bad, it can also signal more problems with extrusion or not the best filament quality. Blobs, zits, or stringy textures on outer layers can mainly be contributed to over-extrusion, wet filament or a variable temperature.

Rough surface

Reasons and Solutions

  1. Over-Extrusion: Too much filament flow or the nozzle being too close to the bed creates blobs, zits, or uneven layers.
    Solution: Make sure your extruder is calibrated by verifying E-steps and setting the slicer flow rate between 95-98%. Print a single wall cube to make sure this is accurate.
  2. Low Z-Offset: An overly low nozzle height causes filament to be excessively squished, leading to bulging layers and artifacts.
    Solution: Raise the Z-offset slightly to allow the nozzle to lay down smooth, even lines without excess pressure.
  3. Wet Filament: PETG filament can sometimes absorb some moisture from the air that can lead to bubbles, uneven flow, and defects in the surfaces or contours of prints.
    Solution: Try drying PETG in the oven or using a filament dryer to remove the moisture. Also store your filament in an airtight container with silica gel when not in use.

Conclusion

When troubleshooting PETG printing, you must come up with a systematic methodology. There are issues you may want to consider: stringing, adhesion and interlayer bonding, clogs, and rough surfaces. These issues will require several adjustments to temperature, retraction, cooling, and bed prep. With proper adjustment and testing, your PETG prints will print consistently and with excellent quality.

]]>
PETG vs. PLA: Wie soll man wählen? https://blog.geeetech.com/deutsche-kolumne/petg-vs-pla-wie-soll-man-wahlen/ Wed, 28 May 2025 09:02:29 +0000 https://blog.geeetech.com/?p=13005 Wir widmen uns heute einem Thema, dass fast jedem Experten und Anfänger über den Weg läuft. Es geht um die Wahl des richtigen Materials. Schwerpunkt liegt bei diesem Artikel auf PLA und PETG. Schwankst du bei der Entscheidung zwischen PLA Filament und PETG 3D Filament, dann haben wir hier den passenden Artikel; Los geht’s!

Die Herkunft und Produktionsprozesse von PETG und PLA

Verschiedene 3D Druck Filamente werden aus verschiedenen Materialien hergestellt und durchlaufen verschiedene Prozesse, bis sie schlussendlich zu einem druckbaren 3D Drucker Filament werden.

PLA wird vorwiegend aus Maisstärke oder Zuckerrohr hergestellt. Grundsätzlich wird ein nachwachsender Rohstoff verwendet. Es handelt sich also um ein biobasiertes und biologisch abbaubares 3D Drucker Filament. Der Rohstoff wird durch Zucker zu einer Milchsäure fermentiert. Diese wird daraufhin zu PLA polymerisiert.

Syntheseprozess von PLA
Syntheseprozess von PLA

PETG dagegen wird aus Erdöl-Derivaten hergestellt. Dies sind zum Beispiel Terephthalsäure und Ethylenglycol. Durch den Polymerisationsprozess wird ein veränderter (modifizierter) Polyester hergestellt.

Der Syntheseprozess von PETG
Der Syntheseprozess von PETG

PLA Filament ist aufgrund seiner biologischen Abbauarbeit und seiner Herstellung aus nachwachsenden Rohstoffen sehr beliebt.
PETG ist aufgrund seiner Materialeigenschaften (sehr robust) in verschiedenen Branchen für den 3D Druck sehr beliebt.

Vergleich der Eigenschaften

Was sind die Filament-Unterschiede zwischen PLA-Filament und PETG 3D Filament? Hier siehst du die wichtigsten Merkmale übersichtlich in einer Tabelle und kannst besser abwägen, ob PLA oder PETG das passende Filament für deinen aktuellen Druck ist.

 PETGPLA
Chemische Eigenschaftengute Beständigkeit bei Säuren und Basenmittlere UV-Beständigkeitnicht biologisch abbaubarkaum Geruch beim Druckengeringe Beständigkeitgeringe UV-Beständigkeitist unter bestimmten Bedingungen kompostierbarleicht süßlicher Geruch beim Drucken
Physikalische EigenschaftenDichte: ca. 1,27–1,29 g/cm³Glasübergangstemperatur: ca. 75–85 °CKristalinität:amorphtransparentDichte: ca. 1,24–1,26 g/cm³Glasübergangstemperatur: ca. 55–65 °C Kristalinität: TeilkristalinTeilweise transparent
Mechanische EigenschaftenZugfestigkeit: ca. 50 MPaElastizitätsmodul: ca. 2000 MPaBruchdehnung: hochSchlagzähigkeit: sehr hochZugfestigkeit: ca. 60 MPaElastizitätsmodul: ca. 3500 MPaBruchdehnung: niedrig (spröde)Schlagzähigkeit: gering

 PETG VS PLA: Drucken

Nachdem wir nun bereits Einiges zum Thema Eigenschaften und dem Material selbst erfahren haben, möchten wir einen Blick auf die Druckeinstellungen von PLA Filament und PETG werfen und darauf, wie sich die Nachbearbeitung unterscheidet.

Druckeinstellungen

PETG Filament:

  • Drucktemperatur: 220-240 Grad Celsius
  • Druckbetttemperatur: 80-90 Grad Celsius
  • Druckgeschwindigkeit: 40-60 mm/s
  • Lüftergeschwindigkeit: 30-50 % ( Es wird empfohlen, die Lüftergeschwindigkeit je nach Modellgröße und Druckgeschwindigkeit anzupassen. Für größere Modelle empfehlen wir, den Lüfter auszuschalten. )
  • Retraktion: 5-8 mm Länge, 40-50 mm/s Geschwindigkeit
  • Flussrate: 95-98 %

Möchtest du noch mehr zum Thema PETG Drucken wissen, dann lese diesen Artikel: PETG Drucken

PLA Filament:

  • Drucktemperatur: 190–220 °C ( je nach Hersteller und Drucker )
  • Heizbett-Temperatur: 50–60 °C ( optional, aber empfohlen für bessere Haftung )
  • Druckgeschwindigkeit: 40–60 mm/s ( für beste Qualität )
  • Lüfter: 100 % aktiv ab der zweiten Schicht ( wichtig für saubere Details )
  • Retract (Rückzug): ca. 1–2 mm bei Direktantrieb / 4–6 mm bei Bowden, Geschwindigkeit 25–40 mm/s
  • Erste Schicht: langsamer ( ca. 20 mm/s ), mit leichtem „Squish“ für gute Haftung
  • Betthaftung: Blue Tape, PEI, BuildTak oder Klebestift empfohlen

Möchtest du noch mehr zum Thema PLA Drucken wissen, dann lese diesen Artikel: PLA Drucken

Es gibt einige Unterschiede bei den Druckeinstellungen von PETG 3D Filament und PLA Filament. PLA Filament ist wesentlich einfacher zu drucken und verzeiht es, wenn Druckeinstellungen nicht ganz präzise sind.

PETG dagegen benötigt sehr spezifische Einstellungen, um einen erfolgreichen Druck zu garantieren. PETG benötigt beispielsweise wesentlich höhere Drucktemperaturen und eine hohe Druckbetttemperatur, um Warping zu vermeiden. Während man beim Druck mit PLA einen Lüfter benutzt, sollte man beim Druck mit PETG Filament nur gering kühlen, da sonst die Layerhaftung geschwächt wird. Es wird empfohlen den Lüfter bei der ersten Schicht auszuschalten, um eine gute Haftung zu erhalten.

Passende und sorgfältige Einstellung der Retraction und Kühlung sind sehr wichtig bei PETG, um Fäden und Warping zu vermeiden. PLA ist hier weniger anfällig.

PLA ist also sehr gut für Anfänger geeignet, da Einstellungen nicht ganz so präzise sein müssen wie beim PETG Filament. PETG benötigt spezifische Bedingungen beim Druck und bietet dafür im Ergebnis sehr gute Materialeigenschaften (robust, zäh etc.).

Nachbearbeitung

PLA ist sowohl beim Druck als auch bei der Nachbearbeitung einfach zu handhaben. PLA kann relativ einfach geschliffen und bemalt werden. PETG dagegen ist schwieriger zu schleifen (Schmiergefahr) und zu bemalen (fettabweisende Oberfläche). Die Nachbearbeitung ist bei PETG wesentlich aufwändiger und komplexer als bei PLA.

Co-Printing von PETG und PLA

Kann man beide Materialien vereinen? Die Antwort ist Ja! Es gibt zwei Methoden, wie das PLA Filament und PETG 3D Filament zusammen gedruckt werden kann. Zum einen ist dies der energieeffiziente Niedertemperaturdruck und zum anderen ist dies der Mischdruck in einer Umgebung mit niedrigen Temperaturen.

Welche PETG Temperatur und PLA Temperatur benötigt wird und wie der Ablauf funktioniert, erklären wir hier:

Energieeffizienter Niedertemperaturdruck

Diese Methode erlaubt es dir, den Gesamtenergieverbrauch sehr gering zu halten und gleichzeitig PETG und PLA zu kombinieren. Auch erhält man eine verbesserte Materialkombination durch angepasste Prozessführung und der Drucker wird geschont.

Die Heizbetttemperatur wird gleichmäßig auf 60 °C eingestellt (PLA benötigt üblicherweise 60 °C, PETG 70–80 °C).

Die Haftung von PETG wird durch eine Vergrößerung der Grundfläche (z. B. durch eine Kantenverlängerung um 5 mm) ausgeglichen.

PLA dient als Trägermaterial (für Niedertemperaturdruck geeignet), PETG als Hauptstruktur.

PLA als Stützmaterial für PETG
PLA als Stützmaterial für PETG

Grundsätzlich wird empfohlen, geeignete Materialtypen zu verwenden, die Druckgeschwindigkeit zu reduzieren und gleichzeitig die Kühlung anzupassen.

Um die durch das Entfernen der Träger entstehende Beschädigung der Oberfläche der Hauptstruktur zu reduzieren, sind wasserlösliche PLA-Träger eine innovative Anwendung. Diese Methode ist jedoch eine weitere ganz eigene Möglichkeit PLA und PETG zu kombinieren!

Mischdruck in einer Umgebung mit niedrigen Temperaturen

Mischdrucke nennt man auch Multimaterialdruck. Hier werden mehrere Materialien für den Druck verwendet. SO werden zum Beispiel weiche und flexible Teile des Objekts mit einem bestimmten 3D Druck Filament gedruckt, während stabile Trägerteile mit 3D Druck Filament wie PETG gedruckt werden. So werden Materialeigenschaften verschiedener 3D Drucker Materialien kombiniert und genutzt.

In Deutschland ist die Werkstatttemperatur im Winter aufgrund des kalten Klimas niedrig (<18 °C). Herkömmliches PETG neigt aufgrund der schnellen Abkühlung zur Rissbildung, und PLA wird nach einiger Zeit besonders bei kalter und trockener Umgebung spröde. Die Lösung für diese Herausforderung ist: PETG+PLA-Verbundschale:

Die Außenschicht besteht aus PETG (kältebeständig), die Innenschicht aus PLA (Rapid Prototyping).

Die Filamente werden gleichmäßig bei 220 °C gedruckt:

-> PLA-Teil: Temperatur auf 210 °C reduzieren und Lüfter ausschalten.

-> PETG-Teil: Temperatur auf 225 °C erhöhen, Lüfter mit 30 % Leistung laufen lassen.

Bei einer kalten Außentemperatur muss bei dem sogenannten Mischdruck die Drucktemperatur angepasst werden, gute mechanische Verbindungen vorausgesetzt sein, und wenn möglich sollte ein ruhiger und stabiler Bauraum verwendet werden.

Anwendungen

Aufgrund der unterschiedlichen Materialeigenschaften gibt es sowohl für PLA Filament als auch PETG Filament geeignete Anwendungsbereiche. Hier sind ein paar Beispiele, bei denen PLA 3D Filament als 3D Drucker Material verwendet wird und bei dem PETG Filament als 3D Druck Filament genutzt wird.

Anwendungen von PETG-Filament

PETG ist sehr gut für robuste, funktionale und langlebige Objekte geeignet. Hier ein paar Beispiele:

  • Funktionsbauteile wie Halterungen und Clips
  • Technische Teile wie Zahnräder, und Schutzabdeckungen
  • Dauerhafte Teile wie Montageschablonen und Befestigungen
  • Gebrauchsgegenstände wie Boxen und Dosen
Kameratischklammer aus PETG
Kameratischklammer aus PETG ( Bildquelle: Frohmann@Printables )

Anwendungen von PLA-Filament

PLA ist für visuelle, einfache und dekorative Drucke geeignet. Hier ein paar Beispiele:

  • Dekorative Objekte wie Vasen, Figuren, Miniaturen
  • Prototypen wie Gehäuse und Designstudien
  • Bildungsprojekte wie Lernhilfen Baukästen
  • Alltagsgegenstände wie Schlüsselanhänger und Händyhalter
Mit PLA-Filament gedruckte Vasen
Mit PLA-Filament gedruckte Vasen

Fazit

PETG bietet Funktionalität und Haltbarkeit. PLA bietet gute Druckqualität bei geringem Aufwand. Zusätzlich ist es biologisch abbaubar.

Je nachdem, welche Aspekte dir beim Druck oder beim Endprodukt wichtig sind, solltest du entscheiden, ob du als 3D Druck Filament PETG 3D Filament oder PLA 3D Filament nutzen möchtest.

Möglich ist auch, die beiden Materialien zu kombinieren. Dafür müssen besondere Methoden (Energieeffizienter Niedertemperaturdruck und Mischdruck) genutzt werden.

Wäge also in der Vorbereitung ab, welche Objekteigenschaften der gedruckte Gegenstand haben soll und wie gut du dich mit präzisen Druckeinstellungen auskennst und dir dementsprechend den Druck mit komplexen Filamenten zutraust oder lieber einfach zu druckende Filamente verwenden möchtest.

]]>
Flexible 3D Printer Filament: TPE VS TPU https://blog.geeetech.com/materials/flexible-3d-printer-filament-tpe-vs-tpu/ Thu, 24 Apr 2025 09:30:45 +0000 https://www.geeetech.com/blog/?p=12963 When it comes to flexible filament types, there are two main materials to consider as they outperform other common flexible materials (such as flexible PLA or PVC), like elastic recovery rate and fatigue resistance. These are TPE and TPU filaments, which are used in a wide variety of projects that require flexible parts as part of the design or properties. So let us take a closer look at these two filaments and learn when to use either one. Enjoy!

Definition of TPE and TPU

Classification of TPE
Classification of TPE

The scientific names for these two materials are thermoplastic elastomer (TPE) and thermoplastic polyurethane (TPU). While they might sound similar, they have some unique differences that make them great for different 3D printed objects and parts.

What Is TPE

TPE  is the name given to a broad category of materials that use thermoplastics. Many subgenres of materials stem from the umbrella term, such as TPU, TPV, SEBS and more. Therefore, all of these materials share some common features, such as elasticity, while still being machinable due to the plastic elements. TPE is often used for phone cases or gaskets for instance due to the soft and flexible properties.

What Is TPU

TPU is a filament that actually branches off TPE filaments, which is produced by cross-linking the chemical structure in a very specific manner. This results in a semi-rigid material that has excellent wear resistance and is extremely durable. It is typically less soft than TPE, but lasts better. Because of these properties, TPU is an excellent material for tires or protective equipment.

Technological Process of Production

Both materials are produced in a somewhat similar manner, since both materials are made by melting and shaping the material into 3D printing filaments. However, TPE is made super soft and bendable by adding more raw materials with rubber properties, while TPU is made stronger and tougher by adding a special mix of chemicals.

Key Differences Between TPU and TPE Production

Looking at the chart below, we have highlighted a few of the key differences between the two processes for creating TPU and TPE filaments. And looking at the scale, it is clear that thermoplastic polyurethane filament is better if you require a wear-resistant product, while TPE is better for more bendable objects.

FeatureTPUTPE (SEBS-based)
Chemical StructureChemical crosslinking (hard/soft segments)Physical crosslinking (styrene block domains)
Raw Material ProcessingRequires polymerizationPhysical blending (no chemical reaction)
Hardness Range80A–75D (harder, wear-resistant)0A–100A (softer, highly elastic)
Processing Temp.160–220°C180–210°C
HygroscopicityHigh (strict drying required)Low (still moisture-sensitive)

Properties: TPE VS TPU

Below we have provided another table for a quick overview of the different properties of TPE and TPU 3D print filament, which are both popular materials. Use this to guide your next design, based on which properties you wish your object to have.

PropertyTPU (Thermoplastic Polyurethane)TPE (Thermoplastic Elastomer)
FlexibilityModerate flexibility, less bendable than TPEVery flexible, more stretchable
PrintabilityEasier than TPE but requires a direct drive extruderMore challenging, slower print speed
Melting Point220–250°C180–220°C
Weather ResistanceExcellent UV and weather resistanceGood, but less resistant than TPU
Tear ResistanceExcellent, good for industrial partsModerate to good
Chemical ResistanceGood resistance to oils, fats, and solventsLimited resistance to oils and solvents
Temperature ResistanceGood heat resistance (up to 120°C)Moderate heat resistance (up to 80–100°C)
Surface TextureCan be smooth or rough depending on formulationTypically smooth, soft to the touch

Comparing the properties of both materials, it is clear that there are some applications that might be better suited for one over the other. However, as a general rule of thumb, it is typically easier printing with TPU, which you can learn more about in this TPU Filament Guide blog post.

Recycling: TPE VS TPU

Many consumers are increasingly concerned with sustainability, and being able to safely recycle the 3D printing filaments is a great additional bonus for any hobby enthusiast who cares about the environment.

TPE is generally a bit easier to recycle, as it can be melted down and extruded into new filament for instance. TPU is recycled through a more mechanical process, and therefore should be sorted and separated correctly before being disposed of.

Both filaments can be reused for other products, so there is no difference in the final waste. Recycled TPU is often used as a material for insulation, industrial parts or even flooring. TPE has a wider application as recycled materials can be used in many different consumer goods.

Applications: TPE VS TPU

Looking at TPE vs TPU by exploring their applications is a great way to apply what we have learned about the TPE and TPU 3D printer filament properties.

TPU is used for many different soft yet durable products, such as phone cases, footwear, shoe soles, gaskets, seals, automotive parts, medical devices, flexible hoses and sports equipment. These objects can be expected to last a long time, while also being flexible enough to be useful for the purpose.

3D printed TPU shoe
TPU shoe

TPE is also used for phone cases, however, they generally are a bit less protective, but due to their better flexibility, they can fit the phone even better. Other uses are toys, hoses, tubing, seals, straps, insoles, grips for equipment and more.

Cable connector protective sleeve
Cable connector protective sleeve by TPE

Conclusion

Whether you wish to print with filament made from TPU material or TPE material, you should always consider the overall properties of each type, and how you will use your printed object once it is completed.

TPU 3D filament lasts longer and is better for outdoor use, while TPE filament is better suited for softer products that should be safe for children or perfectly fit another product or object requiring high conformity. But as a material for 3D printing, TPE is harder to print than TPU. TPU is more suitable for beginners. Regardless of what you choose, both materials are safe for the environment and great options. Happy printing!

]]>
ABS Filament: High-Strength And Heat Resistant Solution in 3D Printing https://blog.geeetech.com/materials/abs-filament-high-strength-and-heat-resistant-solution-in-3d-printing/ Tue, 04 Mar 2025 06:50:08 +0000 https://www.geeetech.com/blog/?p=12808 Do you sometimes feel it is a challenge to figure out which 3D printer filament will work best for the design you want to print, or are you just looking to brush up on your knowledge of ABS 3D printing techniques? In any case, we will go over everything involved with the process of using ABS plastic filament, including the print settings and which applications and designs are best suited for this material. Enjoy!

What Is ABS Filament?

Before we get to deep into the specifics and settings, let us first make sure we are on the same page regarding ABS 3D printer filament and what it actually is. In short, ABS stands for Acrylonitrile Butadiene Styrene, which is a thermoplastic material that many of us already know well, since it is among other things what the world famous LEGO blocks are made of.

Therefore, it is a safe material that has been tested over many decades. It provides great strength properties that lends itself well to many applications, and it is also highly resistant to heat, making it a solid contender for prints that should not deform due to heat. Furthermore, you can drill and sand the heat resistant 3D printer filament as well, and even use acetone for a clear and smooth finish. Geeetech filament uses enhanced versions of the basic ABS material, known as ABS+ filament which is even better for 3D printing with the improved overall properties.

ABS Print Settings

In order to help you make the most of your 3D filament, and answer common questions, such as what temperature does ABS print at, we have made a quick overview in the table below. Use this as a starting point for your ABS 3D printing projects, but feel free to modify the values if you believe it will work better. These settings have been extensively tested with our very own Geeetech filament ABS+, which allows for optimal 3D printing with ABS plastic projects.

SettingRecommended Values
Nozzle Temperature220-250°C
Hot Bed Temperature90-110°C (Can be turned off, but low temp increases adhesion)
Printing Speed20-150mm/s (Depends on the individual design)
Adhesion & Bed SurfaceUse blue tape, PEI board, or BuildTak for better adhesion. A thin layer of glue or ABS glue stick can also help.
Cooling FanNo fan required. Using a fan may cause warping or cracking.
Support StructureTree support or grid support

What Support Material Is Required for ABS?

Since ABS is an extremely strong and tough material, sometimes it can be difficult to remove the self-supports when printing those with ABS as well. Instead, some users use specialized support materials like PVA, HIPS or Breakaway Supports in combination with the ABS plastic filament, in order to get the best of both worlds. See the table below for inspiration.

Support MaterialProsCons
ABSSimple to useCan be hard to remove
PVAWater-soluble, easy removalRequires a dual extruder
HIPSSoluble in limonene, great for dual extrusionNeeds limonene for dissolution
BreakawayEasy to removeMay leave marks, requires post-processing

Post-processing

One of the major advantages of using ABS filament for your 3D prints, is the ABS temperature resistance properties, that allows for many different post-processing techniques without ruining the look or compromising the structure of your newly printed models.

Post-Processing MethodDescriptionEffect/Benefit
SandingUses sandpaper or sanding sponges to smooth rough surfaces.Reduces layer lines, prepares for painting or coating.
SprayingApplies primer, paint, or clear coat using a spray can or airbrush.Enhances appearance, provides color and protection.
Hot Water TreatmentBriefly dips or rinses the print in hot water to relieve internal stresses.Reduces warping and minor surface imperfections.
Coating & SealingUses epoxy resin, polyurethane, or acrylic coatings to add durability.Strengthens and waterproofs prints, improves surface quality.
Acetone Vapor SmoothingExposes ABS to acetone vapors in a controlled chamber.Creates a glossy, smooth finish by dissolving outer layers.
Acetone vapor smoothing ABS
Acetone vapor smoothing ABS ( Source: Aharance @Reddit )

Applications

In order to provide you with some inspiration for what is possible using ABS 3D printing techniques, we have gathered some very different ideas below, to help you get started with your next project or just inspire you for your own designs. All of these are made by 3D printing with ABS plastic.

Car Interior Panel

Car Interior Panel
ABS Panel ( Source: BMW )

BMW provides MINI owners with personalized interior customization services.Owners can choose different patterns and colors of interior panels according to their personal preferences, which are manufactured and loaded into the car through rapid 3D printing.

ABS 1/4 inch Barbed Connector

ABS 1/4 inch Barbed Connector
1/4 inch Barbed Connector ( Source: bloodVixen@makerworld )

This filament is also great for DIY connectors for your garden hose or other similar types of equipment and tools. Due to the strength and heat resistance, it can be used for many years outside without issue.

Wheel for your office chair

ABS wheel
ABS Wheel

Have you ever had to throw out your favorite chair because one of the wheels broke? Or perhaps you just want to save some money and not purchase a replacement wheel? Then ABS can help you out as well! Look online for different designs that are universally adaptable to any chair.

Phone stand

ABS is also a great option for a phone stand, as the durable and solid material will not bend or flex, making it the perfect companion for late night binge-watching, or perhaps as a holder for your video shoots.

ABS Phone stand
ABS Phone stand

Conclusion

ABS is one of the best 3D printer filament types currently available to consumers, as it offers many different advantages and allows for durable, heat-resistant, and versatile prints. As long as you use the correct 3D printer filament settings, and optionally use our ABS+ filament, then you will get perfect results every time!

]]>